Add news
March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024 December 2024 January 2025 February 2025 March 2025 April 2025 May 2025 June 2025 July 2025 August 2025 September 2025 October 2025 November 2025
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20
21
22
23
24
25
26
27
28
29
30
News Every Day |

Together AI's ATLAS adaptive speculator delivers 400% inference speedup by learning from workloads in real-time

Enterprises expanding AI deployments are hitting an invisible performance wall. The culprit? Static speculators that can't keep up with shifting workloads.

Speculators are smaller AI models that work alongside large language models during inference. They draft multiple tokens ahead, which the main model then verifies in parallel. This technique (called speculative decoding) has become essential for enterprises trying to reduce inference costs and latency. Instead of generating tokens one at a time, the system can accept multiple tokens at once, dramatically improving throughput.

Together AI today announced research and a new system called ATLAS (AdapTive-LeArning Speculator System) that aims to help enterprises overcome the challenge of static speculators. The technique provides a self-learning inference optimization capability that can help to deliver up to 400% faster inference performance than a baseline level of performance available in existing inference technologies such as vLLM.. The system addresses a critical problem: as AI workloads evolve, inference speeds degrade, even with specialized speculators in place.

The company which got its start in 2023, has been focused on optimizing inference on its enterprise AI platform. Earlier this year the company raised $305 million as customer adoption and demand has grown.

"Companies we work with generally, as they scale up, they see shifting workloads, and then they don't see as much speedup from speculative execution as before," Tri Dao, chief scientist at Together AI, told VentureBeat in an exclusive interview. "These speculators generally don't work well when their workload domain starts to shift."

The workload drift problem no one talks about

Most speculators in production today are "static" models. They're trained once on a fixed dataset representing expected workloads, then deployed without any ability to adapt. Companies like Meta and Mistral ship pre-trained speculators alongside their main models. Inference platforms like vLLM use these static speculators to boost throughput without changing output quality.

But there's a catch. When an enterprise's AI usage evolves the static speculator's accuracy plummets.

"If you're a company producing coding agents, and most of your developers have been writing in Python, all of a sudden some of them switch to writing Rust or C, then you see the speed starts to go down," Dao explained. "The speculator has a mismatch between what it was trained on versus what the actual workload is."

This workload drift represents a hidden tax on scaling AI. Enterprises either accept degraded performance or invest in retraining custom speculators. That process captures only a snapshot in time and quickly becomes outdated.

How adaptive speculators work: A dual-model approach

ATLAS uses a dual-speculator architecture that combines stability with adaptation:

The static speculator - A heavyweight model trained on broad data provides consistent baseline performance. It serves as a "speed floor."

The adaptive speculator - A lightweight model learns continuously from live traffic. It specializes on-the-fly to emerging domains and usage patterns.

The confidence-aware controller - An orchestration layer dynamically chooses which speculator to use. It adjusts the speculation "lookahead" based on confidence scores.

"Before the adaptive speculator learns anything, we still have the static speculator to help provide the speed boost in the beginning," Ben Athiwaratkun, staff AI scientist at Together AI explained to VentureBeat. "Once the adaptive speculator becomes more confident, then the speed grows over time."

The technical innovation lies in balancing acceptance rate (how often the target model agrees with drafted tokens) and draft latency. As the adaptive model learns from traffic patterns, the controller relies more on the lightweight speculator and extends lookahead. This compounds performance gains.

Users don't need to tune any parameters. "On the user side, users don't have to turn any knobs," Dao said. "On our side, we have turned these knobs for users to adjust in a configuration that gets good speedup."

Performance that rivals custom silicon

Together AI's testing shows ATLAS reaching 500 tokens per second on DeepSeek-V3.1 when fully adapted. More impressively, those numbers on Nvidia B200 GPUs match or exceed specialized inference chips like Groq's custom hardware.

"The software and algorithmic improvement is able to close the gap with really specialized hardware," Dao said. "We were seeing 500 tokens per second on these huge models that are even faster than some of the customized chips."

The 400% speedup that the company claims for inference represents the cumulative effect of Together's Turbo optimization suite. FP4 quantization delivers 80% speedup over FP8 baseline. The static Turbo Speculator adds another 80-100% gain. The adaptive system layers on top. Each optimization compounds the benefits of the others.

Compared to standard inference engines like vLLM or Nvidia's TensorRT-LLM, the improvement is substantial. Together AI benchmarks against the stronger baseline between the two for each workload before applying speculative optimizations.

The memory-compute tradeoff explained

The performance gains stem from exploiting a fundamental inefficiency in modern inference: wasted compute capacity.

Dao explained that typically during inference, much of the compute power is not fully utilized.

"During inference, which is actually the dominant workload nowadays, you're mostly using the memory subsystem," he said.

Speculative decoding trades idle compute for reduced memory access. When a model generates one token at a time, it's memory-bound. The GPU sits idle while waiting for memory. But when the speculator proposes five tokens and the target model verifies them simultaneously, compute utilization spikes while memory access remains roughly constant.

"The total amount of compute to generate five tokens is the same, but you only had to access memory once, instead of five times," Dao said.

Think of it as intelligent caching for AI

For infrastructure teams familiar with traditional database optimization, adaptive speculators function like an intelligent caching layer, but with a crucial difference.

Traditional caching systems like Redis or memcached require exact matches. You store the exact same query result and retrieve it when that specific query runs again. Adaptive speculators work differently.

"You can view it as an intelligent way of caching, not storing exactly, but figuring out some patterns that you see," Dao explained. "Broadly, we're observing that you're working with similar code, or working with similar, you know, controlling compute in a similar way. We can then predict what the big model is going to say. We just get better and better at predicting that."

Rather than storing exact responses, the system learns patterns in how the model generates tokens. It recognizes that if you're editing Python files in a specific codebase, certain token sequences become more likely. The speculator adapts to those patterns, improving its predictions over time without requiring identical inputs.

Use cases: RL training and evolving workloads

Two enterprise scenarios particularly benefit from adaptive speculators:

Reinforcement learning training: Static speculators quickly fall out of alignment as the policy evolves during training. ATLAS adapts continuously to the shifting policy distribution.

Evolving workloads: As enterprises discover new AI use cases, workload composition shifts. "Maybe they started using AI for chatbots, but then they realized, hey, it can write code, so they start shifting to code," Dao said. "Or they realize these AIs can actually call tools and control computers and do accounting and things like that."

In a vibe-coding session, the adaptive system can specialize for the specific codebase being edited. These are files not seen during training. This further increases acceptance rates and decoding speed.

What it means for enterprises and the inference ecosystem

ATLAS is available now on Together AI's dedicated endpoints as part of the platform at no additional cost. The company's 800,000-plus developers (up from 450,000 in February) have access to the optimization.

But the broader implications extend beyond one vendor's product. The shift from static to adaptive optimization represents a fundamental rethinking of how inference platforms should work. As enterprises deploy AI across multiple domains, the industry will need to move beyond one-time trained models toward systems that learn and improve continuously.

Together AI has historically released some of its research techniques as open source and collaborated with projects like vLLM. While the fully integrated ATLAS system is proprietary, some of the underlying techniques may eventually influence the broader inference ecosystem. 

For enterprises looking to lead in AI, the message is clear: adaptive algorithms on commodity hardware can match custom silicon at a fraction of the cost. As this approach matures across the industry, software optimization increasingly trumps specialized hardware.

Ria.city






Read also

One of Kizer's Super Reliable Hunting Knives Is on Sale for $50 on Amazon Right Now

Streamline your AI stack with one platform and lifetime access for $75

Ryan Garcia Sums Up Jake Paul’s Chances Against Anthony Joshua In Just 3 Words

News, articles, comments, with a minute-by-minute update, now on Today24.pro

Today24.pro — latest news 24/7. You can add your news instantly now — here




Sports today


Новости тенниса


Спорт в России и мире


All sports news today





Sports in Russia today


Новости России


Russian.city



Губернаторы России









Путин в России и мире







Персональные новости
Russian.city





Friends of Today24

Музыкальные новости

Персональные новости