Add news
March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024 December 2024 January 2025 February 2025 March 2025 April 2025 May 2025 June 2025 July 2025 August 2025 September 2025 October 2025 November 2025
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19
20
21
22
23
24
25
26
27
28
29
30
News Every Day |

Is vibe coding ruining a generation of engineers?

AI tools are revolutionizing software development by automating repetitive tasks, refactoring bloated code, and identifying bugs in real-time. Developers can now generate well-structured code from plain language prompts, saving hours of manual effort. These tools learn from vast codebases, offering context-aware recommendations that enhance productivity and reduce errors. Rather than starting from scratch, engineers can prototype quickly, iterate faster and focus on solving increasingly complex problems.

As code generation tools grow in popularity, they raise questions about the future size and structure of engineering teams. Earlier this year, Garry Tan, CEO of startup accelerator Y Combinator, noted that about one-quarter of its current clients use AI to write 95% or more of their software. In an interview with CNBC, Tan said: “What that means for founders is that you don’t need a team of 50 or 100 engineers, you don’t have to raise as much. The capital goes much longer.”

AI-powered coding may offer a fast solution for businesses under budget pressure — but its long-term effects on the field and labor pool cannot be ignored.

As AI-powered coding rises, human expertise may diminish

In the era of AI, the traditional journey to coding expertise that has long supported senior developers may be at risk. Easy access to large language models (LLMs) enables junior coders to quickly identify issues in code. While this speeds up software development, it can distance developers from their own work, delaying the growth of core problem-solving skills. As a result, they may avoid the focused, sometimes uncomfortable hours required to build expertise and progress on the path to becoming successful senior developers.

Consider Anthropic’s Claude Code, a terminal-based assistant built on the Claude 3.7 Sonnet model, which automates bug detection and resolution, test creation and code refactoring. Using natural language commands, it reduces repetitive manual work and boosts productivity.

Microsoft has also released two open-source frameworks — AutoGen and Semantic Kernel — to support the development of agentic AI systems. AutoGen enables asynchronous messaging, modular components, and distributed agent collaboration to build complex workflows with minimal human input. Semantic Kernel is an SDK that integrates LLMs with languages like C#, Python and Java, letting developers build AI agents to automate tasks and manage enterprise applications.

The increasing availability of these tools from Anthropic, Microsoft and others may reduce opportunities for coders to refine and deepen their skills. Rather than “banging their heads against the wall” to debug a few lines or select a library to unlock new features, junior developers may simply turn to AI for an assist. This means senior coders with problem-solving skills honed over decades may become an endangered species.

Overreliance on AI for writing code risks weakening developers’ hands-on experience and understanding of key programming concepts. Without regular practice, they may struggle to independently debug, optimize or design systems. Ultimately, this erosion of skill can undermine critical thinking, creativity and adaptability — qualities that are essential not just for coding, but for assessing the quality and logic of AI-generated solutions.

AI as mentor: Turning code automation into hands-on learning

While concerns about AI diminishing human developer skills are valid, businesses shouldn’t dismiss AI-supported coding. They just need to think carefully about when and how to deploy AI tools in development. These tools can be more than productivity boosters; they can act as interactive mentors, guiding coders in real time with explanations, alternatives and best practices.

When used as a training tool, AI can reinforce learning by showing coders why code is broken and how to fix it—rather than simply applying a solution. For example, a junior developer using Claude Code might receive immediate feedback on inefficient syntax or logic errors, along with suggestions linked to detailed explanations. This enables active learning, not passive correction. It’s a win-win: Accelerating project timelines without doing all the work for junior coders.

Additionally, coding frameworks can support experimentation by letting developers prototype agent workflows or integrate LLMs without needing expert-level knowledge upfront. By observing how AI builds and refines code, junior developers who actively engage with these tools can internalize patterns, architectural decisions and debugging strategies — mirroring the traditional learning process of trial and error, code reviews and mentorship.

However, AI coding assistants shouldn’t replace real mentorship or pair programming. Pull requests and formal code reviews remain essential for guiding newer, less experienced team members. We are nowhere near the point at which AI can single-handedly upskill a junior developer.

Companies and educators can build structured development programs around these tools that emphasize code comprehension to ensure AI is used as a training partner rather than a crutch. This encourages coders to question AI outputs and requires manual refactoring exercises. In this way, AI becomes less of a replacement for human ingenuity and more of a catalyst for accelerated, experiential learning.

Bridging the gap between automation and education

When utilized with intention, AI doesn’t just write code; it teaches coding, blending automation with education to prepare developers for a future where deep understanding and adaptability remain indispensable.

By embracing AI as a mentor, as a programming partner and as a team of developers we can direct to the problem at hand, we can bridge the gap between effective automation and education. We can empower developers to grow alongside the tools they use. We can ensure that, as AI evolves, so too does the human skill set, fostering a generation of coders who are both efficient and deeply knowledgeable.

Richard Sonnenblick is chief data scientist at Planview.

Ria.city






Read also

The Super Predator: How Humans Became the Animal Kingdom’s Most Feared Hunters

Targeting Palantir and Nvidia: Profits, Prophets and Overvalued AI Stocks

Head coach Roz Ellis has field hockey ‘right on the edge’ of greatness

News, articles, comments, with a minute-by-minute update, now on Today24.pro

Today24.pro — latest news 24/7. You can add your news instantly now — here




Sports today


Новости тенниса


Спорт в России и мире


All sports news today





Sports in Russia today


Новости России


Russian.city



Губернаторы России









Путин в России и мире







Персональные новости
Russian.city





Friends of Today24

Музыкальные новости

Персональные новости