{*}
Add news
March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024 December 2024 January 2025 February 2025 March 2025 April 2025 May 2025 June 2025 July 2025 August 2025 September 2025 October 2025 November 2025 December 2025 January 2026 February 2026
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20
21
22
23
24
25
26
27
28
News Every Day |

When accurate AI is still dangerously incomplete

Typically, when building, training and deploying AI, enterprises prioritize accuracy. And that, no doubt, is important; but in highly complex, nuanced industries like law, accuracy alone isn’t enough. Higher stakes mean higher standards: Models outputs must be assessed for relevancy, authority, citation accuracy and hallucination rates. 

To tackle this immense task, LexisNexis has evolved beyond standard retrieval-augmented generation (RAG) to graph RAG and agentic graphs; it has also built out "planner" and "reflection" AI agents that parse requests and criticize their own outputs. 

“There’s no such [thing] as ‘perfect AI’ because you never get 100% accuracy or 100% relevancy, especially in complex, high stake domains like legal,” Min Chen, LexisNexis' SVP and chief AI officer, acknowledges in a new VentureBeat Beyond the Pilot podcast. 

The goal is to manage that uncertainty as much as possible and translate it into consistent customer value. “At the end of the day, what matters most for us is the quality of the AI outcome, and that is a continuous journey of experimentation, iteration and improvement,” Chen said. 

Getting ‘complete’ answers to multi-faceted questions

To evaluate models and their outputs, Chen’s team has established more than a half-dozen “sub metrics” to measure “usefulness” based on several factors — authority, citation accuracy, hallucination rates — as well as “comprehensiveness.” This particular metric is designed to evaluate whether a gen AI response fully addressed all aspects of a users' legal questions. 

“So it's not just about relevancy,” Chen said. “Completeness speaks directly to legal reliability.”

For instance, a user may ask a question that requires an answer covering five distinct legal considerations. Gen AI may provide a response that accurately addresses three of these. But, while relevant, this partial answer is incomplete and, from a user perspective, insufficient. This can be misleading and pose real-life risks.

Or, for example, some citations may be semantically relevant to a user's question, but they may point to arguments or instances that were ultimately overruled in court. “Our lawyers will consider them not citable,” Chen said. “If they're not citable, they're not useful.”

Moving beyond standard RAG

LexisNexis launched its flagship gen AI product, Lexis+ AI — a legal AI tool for drafting, research and analysis — in 2023. It was built on a standard RAG framework and hybrid vector search that grounds responses in LexisNexis' trusted, authoritative knowledge base. 

The company then released its personal legal assistant, Protégé, in 2024. This agent incorporates a knowledge graph layer on top of vector search to overcome a “key limitation” of  pure semantic search. Although “very good” at retrieving contextually relevant content, semantic search “doesn't always guarantee authoritative answers," Chen said.

Initial semantic search returns what it deems relevant content; Chen’s team then traverses those returns across a “point of law” graph to further filter the most highly authoritative documents.

Going beyond this, Chen's team is developing agentic graphs and accelerating automation so agents can plan and execute complex multi-step tasks. 

For instance, self-directed “planner agents” for research Q&A break user questions into multiple sub-questions. Human users can review and edit these to further refine and personalize final answers. Meanwhile, a “reflection agent” handles transactional document drafting. It can “automatically, dynamically” criticize its initial draft, then incorporate that feedback and refine in real time.

However, Chen said that all of this is not to cut humans out of the mix; human experts and AI agents can “learn, reason and grow together.” “I see the future [as] a deeper collaboration between humans and AI.”

Watch the podcast to hear more about: 

  • How LexisNexis’ acquisition of Henchman helped ground AI models with proprietary LexisNexis data and customer data; 

  • The difference between deterministic and non-deterministic evaluation; 

  • Why enterprises should identify KPIs and definitions of success before rushing to experimentation;

  • The importance of focusing on a “triangle” of key components: Cost, speed and quality.

You can also listen and subscribe to Beyond the Pilot on Spotify, Apple or wherever you get your podcasts.

Ria.city






Read also

Jeffries threatens 'extremist' MAGA Republicans with consequences if GOP loses House

2026 Mets Positional Outlook: Starting Pitchers

bet365 Bonus Code FOX365 Scores $150 in Bonus Bets for USA Hockey's Quarter Final

News, articles, comments, with a minute-by-minute update, now on Today24.pro

Today24.pro — latest news 24/7. You can add your news instantly now — here




Sports today


Новости тенниса


Спорт в России и мире


All sports news today





Sports in Russia today


Новости России


Russian.city



Губернаторы России









Путин в России и мире







Персональные новости
Russian.city





Friends of Today24

Музыкальные новости

Персональные новости