{*}
Add news
March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024 December 2024 January 2025 February 2025 March 2025 April 2025 May 2025 June 2025 July 2025 August 2025 September 2025 October 2025 November 2025 December 2025 January 2026 February 2026
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17
18
19
20
21
22
23
24
25
26
27
28
News Every Day |

Nvidia, Groq and the limestone race to real-time AI: Why enterprises win or lose here

​From miles away across the desert, the Great Pyramid looks like a perfect, smooth geometry — a sleek triangle pointing to the stars. Stand at the base, however, and the illusion of smoothness vanishes. You see massive, jagged blocks of limestone. It is not a slope; it is a staircase.

​Remember this the next time you hear futurists talking about exponential growth.

​Intel’s co-founder Gordon Moore (Moore's Law) is famously quoted for saying in 1965 that the transistor count on a microchip would double every year. Another Intel executive, David House, later revised this statement to “compute power doubling every 18 months." For a while, Intel’s CPUs were the poster child of this law. That is, until the growth in CPU performance flattened out like a block of limestone.

​If you zoom out, though, the next limestone block was already there — the growth in compute merely shifted from CPUs to the world of GPUs. Jensen Huang, Nvidia’s CEO, played a long game and came out a strong winner, building his own stepping stones initially with gaming, then computer visioniand recently, generative AI.

​The illusion of smooth growth

​Technology growth is full of sprints and plateaus, and gen AI is not immune. The current wave is driven by transformer architecture. To quote Anthropic’s President and co-founder Dario Amodei: “The exponential continues until it doesn’t. And every year we’ve been like, ‘Well, this can’t possibly be the case that things will continue on the exponential’ — and then every year it has.”

​But just as the CPU plateaued and GPUs took the lead, we are seeing signs that LLM growth is shifting paradigms again. For example, late in 2024, DeepSeek surprised the world by training a world-class model on an impossibly small budget, in part by using the MoE technique.

​Do you remember where you recently saw this technique mentioned? Nvidia’s Rubin press release: The technology includes “...the latest generations of Nvidia NVLink interconnect technology... to accelerate agentic AI, advanced reasoning and massive-scale MoE model inference at up to 10x lower cost per token.”

​Jensen knows that achieving that coveted exponential growth in compute doesn’t come from pure brute force anymore. Sometimes you need to shift the architecture entirely to place the next stepping stone.

​The latency crisis: Where Groq fits in

​This long introduction brings us to Groq.

​The biggest gains in AI reasoning capabilities in 2025 were driven by “inference time compute” — or, in lay terms, “letting the model think for a longer period of time.” But time is money. Consumers and businesses do not like waiting.

​Groq comes into play here with its lightning-speed inference. If you bring together the architectural efficiency of models like DeepSeek and the sheer throughput of Groq, you get frontier intelligence at your fingertips. By executing inference faster, you can “out-reason” competitive models, offering a “smarter” system to customers without the penalty of lag.

​From universal chip to inference optimization

​For the last decade, the GPU has been the universal hammer for every AI nail. You use H100s to train the model; you use H100s (or trimmed-down versions) to run the model. But as models shift toward "System 2" thinking — where the AI reasons, self-corrects and iterates before answering — the computational workload changes.

​Training requires massive parallel brute force. Inference, especially for reasoning models, requires faster sequential processing. It must generate tokens instantly to facilitate complex chains of thought without the user waiting minutes for an answer. ​Groq’s LPU (Language Processing Unit) architecture removes the memory bandwidth bottleneck that plagues GPUs during small-batch inference, delivering lightning-fast inference.

​The engine for the next wave of growth

​For the C-Suite, this potential convergence solves the "thinking time" latency crisis. Consider the expectations from AI agents: We want them to autonomously book flights, code entire apps and research legal precedent. To do this reliably, a model might need to generate 10,000 internal "thought tokens" to verify its own work before it outputs a single word to the user.

  • On a standard GPU: 10,000 thought tokens might take 20 to 40 seconds. The user gets bored and leaves.

  • On Groq: That same chain of thought happens in less than 2 seconds.

​If Nvidia integrates Groq’s technology, they solve the "waiting for the robot to think" problem. They preserve the magic of AI. Just as they moved from rendering pixels (gaming) to rendering intelligence (gen AI), they would now move to rendering reasoning in real-time.

​Furthermore, this creates a formidable software moat. Groq’s biggest hurdle has always been the software stack; Nvidia’s biggest asset is CUDA. If Nvidia wraps its ecosystem around Groq’s hardware, they effectively dig a moat so wide that competitors cannot cross it. They would offer the universal platform: The best environment to train and the most efficient environment to run (Groq/LPU).

Consider what happens when you couple that raw inference power with a next-generation open source model (like the rumored DeepSeek 4): You get an offering that would rival today’s frontier models in cost, performance and speed. That opens up opportunities for Nvidia, from directly entering the inference business with its own cloud offering, to continuing to power a growing number of exponentially growing customers.

​The next step on the pyramid

​Returning to our opening metaphor: The "exponential" growth of AI is not a smooth line of raw FLOPs; it is a staircase of bottlenecks being smashed.

  • Block 1: We couldn't calculate fast enough. Solution: The GPU.

  • Block 2: We couldn't train deep enough. Solution: Transformer architecture.

  • Block 3: We can't "think" fast enough. Solution: Groq’s LPU.

​Jensen Huang has never been afraid to cannibalize his own product lines to own the future. By validating Groq, Nvidia wouldn't just be buying a faster chip; they would be bringing next-generation intelligence to the masses.

Andrew Filev, founder and CEO of Zencoder

Ria.city






Read also

Off-trail avalanche kills 2 skiers and injures 1 in northern Italy

WHO: Unvaccinated Returned Children in Afghanistan Raise Disease Risks

Non-Roster Invitee Preview: Jack Wenninger

News, articles, comments, with a minute-by-minute update, now on Today24.pro

Today24.pro — latest news 24/7. You can add your news instantly now — here




Sports today


Новости тенниса


Спорт в России и мире


All sports news today





Sports in Russia today


Новости России


Russian.city



Губернаторы России









Путин в России и мире







Персональные новости
Russian.city





Friends of Today24

Музыкальные новости

Персональные новости