{*}
Add news
March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024 December 2024 January 2025 February 2025 March 2025 April 2025 May 2025 June 2025 July 2025 August 2025 September 2025 October 2025 November 2025 December 2025 January 2026 February 2026
1 2 3 4 5 6 7 8 9 10 11 12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
News Every Day |

Why most AI rollouts fail

Artificial intelligence has shifted from an experiment to an expectation. Boards push CEOs about ROI. CEOs launch enterprise rollouts. Leaders invest in tools, platforms, and governance. Yet adoption still stalls. Work-arounds spread. Risk grows. Value lags.

The failure rarely sits with the technology. The breakdown sits in adoption design. Many organizations treat AI as an IT rollout or a standard change initiative. Tools gain approval. Policies circulate. Training launches. What’s missing is the rigor leaders apply to external products. Employees receive tools without a clear value proposition. Managers face delivery pressure without added capacity. Governance favors control over learning.

The result is predictable. Hesitation rises. Burnout grows. Execution fragments, especially in the middle of the organization.

Dana, a VP leading AI enablement at a global business-to-business services firm, lived this firsthand. The mandate was clear: deploy approved AI tools across marketing, sales, and customer success within eight months. Legal and PR aligned. Training sessions were launched as well as dashboards to track usage.

On paper, the rollout looked disciplined. Usage dashboards showed logins, prompts, and license activity. In practice, teams struggled to use the tools in live client work. Approved platforms added steps, limited outputs, or failed to match real workflows. Under delivery pressure, some teams tested briefly and moved on. Others complied superficially. Many shifted core work to external tools that felt faster and more flexible, while using approved systems only enough to register activity.

Dana ran into what we call the “mandate trap.” Leaders mandate AI from the top. The work of making it usable lands in the middle.

“We didn’t have a resistance problem,” Dana reflected. “We had a design problem.”

Her experience reflects what we see across organizations and in AI adoption workshops with C-suite and senior leaders. Teams revert to familiar workflows. Learning time disappears as daily delivery targets crowd out capability building. Worse, often, leaders label this gap as a resistance to AI, rather than identifying the underlying problems and solving them.

Through our advisory work and research, Jenny as an executive coach and learning and development expert, and Noam as an AI strategist, we see three practices separate the organizations that are able to scale AI within their organizations from the ones that have stalled rollouts. 

Reframe ‘Resistance’ as a workflow problem

Leaders often label hesitation as a mindset issue. In reality, hesitation reflects risk. Employees disengage when expectations are off, outputs feel unattainable, or policies feel unclear. Under delivery pressure, people choose speed and safety. When AI complicates execution rather than simplifying it, adoption stalls.

Middle managers absorb the strain. They must deliver faster, coach new behaviors, manage risk, and hold uncertainty, without changes to incentives, capacity, or decision rights. Adoption breaks where pressure concentrates. The issue is not motivation. It is an internal product-market fit problem.

Internal product market fit exists when a tool solves a real workflow problem well enough that teams keep using it under real constraints. This insight shifted Dana’s rollout. She stopped pushing compliance and paused deployment to focus on solving the problems internal teams were running into. 

What leaders can do:

  • Diagnose hesitation: Identify where trust breaks. Unreliable outputs. Unclear revision paths. Slow approvals. Fix friction before pushing usage.
  • Start small: Focus on one workflow, one outcome, one team learning together.
  • Name the fear: Address job loss concerns directly. Clarify what stays human-led and how AI fits workforce plans. Psychological safety creates engagement.
  • Relieve pressure: Protect learning time. Reset targets or adoption stays surface level.

When leaders treat resistance as a design signal, adoption moves from compliance to progress.

Treat Employees as ‘Customer Zero’

Leaders who succeed stop deploying AI and start selling it internally. Strong AI adoption follows a different playbook. Leaders anchor change in outcomes, redesign workflows, involve employees as cocreators, and invest in learning as a core capability. Dana pulled in platform teams, product marketing, communications, and functional leaders. Teams receive a clear value proposition tied to real workflow friction, not feature lists or policy decks. Trust grows when people understand how outputs form, how risks are managed, and where human judgment remains essential.

Early wins rarely show up as profit. They show up as faster cycles, higher-quality work, fewer errors, and less rework. Tools gain traction when they simplify work.

Dana ran short discovery sprints with marketing, sales, and operations. She stopped asking whether teams used the tools. She asked where work slowed, where rework piled up, and where judgment mattered most.

What leaders can do:

  • Anchor on outcomes: Define what should feel faster, easier, or more reliable.
  • Build trust early: Set clear governance and human-in-the-loop guardrails.
  • Reimagine workflows: Integrate AI into existing systems and execution moments.
  • Cocreate with employees: Involve teams in discovery and testing.
  • Treat learning as core work: Protect time to experiment and build confidence.

When leaders treat employees as “customer zero,” adoption shifts from compliance to sustained change.

Protect the Middle to Unlock Learning

AI adoption breaks most often in the middle. Managers must change how work gets done while hitting the same targets. Meanwhile, managers drive most team engagement while carrying the heaviest strain. When learning competes with delivery, delivery wins.

Effective leaders redesign these conditions. They reset expectations to protect time to learn. They reward experiments that reduce risk over time. Before scaling, they ask two questions: Does this remove real workflow friction? Do people trust it enough to use it?

Dana acted on this insight. She gave managers protected time to test workflows and share findings. Early wins became simple playbooks. Only proven practices scaled. Managers moved from firefighting to coaching. Governance shifted from gatekeeping to enablement.

Dana narrowed focus instead of widening it. Teams submitted real workflow tests. Dana selected only those with clear impact and protected a full quarter to run them end to end. Some tools removed friction and earned trust. Others added noise. She scaled the winners and retired the rest.

What leaders can do:

  • Spot what works: Identify teams who are already using AI to reduce friction. Turn those efforts into repeatable practices.
  • Reward learning: Recognize managers for building capability and sharing insights, not tool usage.
  • Run disciplined experiments: Require clear hypotheses, small pilots, and documented learning.
  • Hold the bar high: Reward honest reporting of failures so scale stays credible.

AI transformation is an organizational design challenge, not an IT rollout. The mandate trap is avoidable. Leaders escape it when they stop pushing adoption and start earning it.


Ria.city






Read also

37 Percent of Power Users Make AI Their Primary Finance Tool

Bringing a drone to Cyprus: What travellers need to know

Caramelos Salvajes Spain Play & Earn

News, articles, comments, with a minute-by-minute update, now on Today24.pro

Today24.pro — latest news 24/7. You can add your news instantly now — here




Sports today


Новости тенниса


Спорт в России и мире


All sports news today





Sports in Russia today


Новости России


Russian.city



Губернаторы России









Путин в России и мире







Персональные новости
Russian.city





Friends of Today24

Музыкальные новости

Персональные новости