Add news
March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024 December 2024 January 2025 February 2025 March 2025 April 2025 May 2025 June 2025 July 2025 August 2025 September 2025 October 2025 November 2025 December 2025 January 2026 February 2026
1 2 3 4 5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
News Every Day |

The ‘brownie recipe problem’: why LLMs must have fine-grained context to deliver real-time results

Today’s LLMs excel at reasoning, but can still struggle with context. This is particularly true in real-time ordering systems like Instacart

Instacart CTO Anirban Kundu calls it the "brownie recipe problem."

It's not as simple as telling an LLM ‘I want to make brownies.’ To be truly assistive when planning the meal, the model must go beyond that simple directive to understand what’s available in the user’s market based on their preferences — say, organic eggs versus regular eggs — and factor that into what’s deliverable in their geography so food doesn’t spoil. This among other critical factors. 

For Instacart, the challenge is juggling latency with the right mix of context to provide experiences in, ideally, less than one second’s time. 

“If reasoning itself takes 15 seconds, and if every interaction is that slow, you're gonna lose the user,” Kundu said at a recent VB event. 

Mixing reasoning, real-world state, personalization

In grocery delivery, there’s a “world of reasoning” and a “world of state” (what’s available in the real world), Kundu noted, both of which must be understood by an LLM along with user preference. But it’s not as simple as loading the entirety of a user’s purchase history and known interests into a reasoning model. 

“Your LLM is gonna blow up into a size that will be unmanageable,” said Kundu. 

To get around this, Instacart splits processing into chunks. First, data is fed into a large foundational model that can understand intent and categorize products. That processed data is then routed to small language models (SLMs) designed for catalog context (the types of food or other items that work together) and semantic understanding. 

In the case of catalog context, the SLM must be able to process multiple levels of details around the order itself as well as the different products. For instance, what products go together and what are their relevant replacements if the first choice isn't in stock? These substitutions are “very, very important” for a company like Instacart, which Kundu said has “over double digit cases” where a product isn’t available in a local market. 

In terms of semantic understanding, say a shopper is looking to buy healthy snacks for children. The model needs to understand what a healthy snack is and what foods are appropriate for, and appeal to, an 8 year old, then identify relevant products. And, when those particular products aren’t available in a given market, the model has to also find related subsets of products. 

Then there’s the logistical element. For example, a product like ice cream melts quickly, and frozen vegetables also don’t fare well when left out in warmer temperatures. The model must have this context and calculate an acceptable deliverability time. 

“So you have this intent understanding, you have this categorization, then you have this other portion about logistically, how do you do it?”, Kundu noted.

Avoiding 'monolithic' agent systems

Like many other companies, Instacart is experimenting with AI agents, finding that a mix of agents works better than a “single monolith” that does multiple different tasks. The Unix philosophy of a modular operating system with smaller, focused tools helps address different payment systems, for instance, that have varying failure modes, Kundu explained. 

“Having to build all of that within a single environment was very unwieldy,” he said. Further, agents on the back end talk to many third-party platforms, including point-of-sale (POS) and catalog systems. Naturally, not all of them behave the same way; some are more reliable than others, and they have different update intervals and feeds. 

“So being able to handle all of those things, we've gone down this route of microagents rather than agents that are dominantly large in nature,” said Kundu. 

To manage agents, Instacart has integrated with OpenAI’s model context protocol (MCP), which standardizes and simplifies the process of connecting AI models to different tools and data sources.

The company also uses Google’s Universal Commerce Protocol (UCP) open standard, which allows AI agents to directly interact with merchant systems. 

However, Kundu's team still deals with challenges. As he noted, it's not about whether integration is possible, but how reliably those integrations behave and how well they're understood by users. Discovery can be difficult, not just in identifying available services, but understanding which ones are appropriate for which task.

Instacart has had to implement MCP and UCP in “very different” cases, and the biggest problems they’ve run into are failure modes and latency, Kundu noted. “The response times and understandings of both of those services are very, very different I would say we spend probably two thirds of the time fixing those error cases.” 

Ria.city






Read also

Sports in Marin: Thursday, Friday

ICE 'atrocities' lead to mounting calls for abolishment: 'They think they're at war!'

Stanford programs aid in underclassmen’s search for summer opportunities

News, articles, comments, with a minute-by-minute update, now on Today24.pro

Today24.pro — latest news 24/7. You can add your news instantly now — here




Sports today


Новости тенниса


Спорт в России и мире


All sports news today





Sports in Russia today


Новости России


Russian.city



Губернаторы России









Путин в России и мире







Персональные новости
Russian.city





Friends of Today24

Музыкальные новости

Персональные новости