Add news
March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024 December 2024 January 2025 February 2025 March 2025 April 2025 May 2025 June 2025 July 2025 August 2025 September 2025 October 2025 November 2025 December 2025 January 2026 February 2026
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
News Every Day |

Most RAG systems don’t understand sophisticated documents — they shred them

By now, many enterprises have deployed some form of RAG. The promise is seductive: index your PDFs, connect an LLM and instantly democratize your corporate knowledge.

But for industries dependent on heavy engineering, the reality has been underwhelming. Engineers ask specific questions about infrastructure, and the bot hallucinates.

The failure isn't in the LLM. The failure is in the preprocessing.

Standard RAG pipelines treat documents as flat strings of text. They use "fixed-size chunking" (cutting a document every 500 characters). This works for prose, but it destroys the logic of technical manuals. It slices tables in half, severs captions from images, and ignores the visual hierarchy of the page.

Improving RAG reliability isn't about buying a bigger model; it's about fixing the "dark data" problem through semantic chunking and multimodal textualization.

Here is the architectural framework for building a RAG system that can actually read a manual.

The fallacy of fixed-size chunking

In a standard Python RAG tutorial, you split text by character count. In an enterprise PDF, this is disastrous.

If a safety specification table spans 1,000 tokens, and your chunk size is 500, you have just split the "voltage limit" header from the "240V" value. The vector database stores them separately. When a user asks, "What is the voltage limit?", the retrieval system finds the header but not the value. The LLM, forced to answer, often guesses.

The solution: Semantic chunking

The first step to fixing production RAG is abandoning arbitrary character counts in favor of document intelligence.

Using layout-aware parsing tools (such as Azure Document Intelligence), we can segment data based on document structure such as chapters, sections and paragraphs, rather than token count.

  • Logical cohesion: A section describing a specific machine part is kept as a single vector, even if it varies in length.

  • Table preservation: The parser identifies a table boundary and forces the entire grid into a single chunk, preserving the row-column relationships that are vital for accurate retrieval.

In our internal qualitative benchmarks, moving from fixed to semantic chunking significantly improved the retrieval accuracy of tabular data, effectively stopping the fragmentation of technical specs.

Unlocking visual dark data

The second failure mode of enterprise RAG is blindness. A massive amount of corporate IP exists not in text, but in flowcharts, schematics and system architecture diagrams. Standard embedding models (like text-embedding-3-small) cannot "see" these images. They are skipped during indexing.

If your answer lies in a flowchart, your RAG system will say, "I don't know."

The solution: Multimodal textualization

To make diagrams searchable, we implemented a multimodal preprocessing step using vision-capable models (specifically GPT-4o) before the data ever hits the vector store.

  1. OCR extraction: High-precision optical character recognition pulls text labels from within the image.

  2. Generative captioning: The vision model analyzes the image and generates a detailed natural language description ("A flowchart showing that process A leads to process B if the temperature exceeds 50 degrees").

  3. Hybrid embedding: This generated description is embedded and stored as metadata linked to the original image.

Now, when a user searches for "temperature process flow," the vector search matches the description, even though the original source was a PNG file.

The trust layer: Evidence-based UI

For enterprise adoption, accuracy is only half the battle. The other half is verifiability.

In a standard RAG interface, the chatbot gives a text answer and cites a filename. This forces the user to download the PDF and hunt for the page to verify the claim. For high-stakes queries ("Is this chemical flammable?"), users simply won't trust the bot.

The architecture should implement visual citation. Because we preserved the link between the text chunk and its parent image during the preprocessing phase, the UI can display the exact chart or table used to generate the answer alongside the text response.

This "show your work" mechanism allows humans to verify the AI's reasoning instantly, bridging the trust gap that kills so many internal AI projects.

Future-proofing: Native multimodal embeddings

While the "textualization" method (converting images to text descriptions) is the practical solution for today, the architecture is rapidly evolving.

We are already seeing the emergence of native multimodal embeddings (such as Cohere’s Embed 4). These models can map text and images into the same vector space without the intermediate step of captioning. While we currently use a multi-stage pipeline for maximum control, the future of data infrastructure will likely involve "end-to-end" vectorization where the layout of a page is embedded directly.

Furthermore, as long context LLMs become cost-effective, the need for chunking may diminish. We may soon pass entire manuals into the context window. However, until latency and cost for million-token calls drop significantly, semantic preprocessing remains the most economically viable strategy for real-time systems.

Conclusion

The difference between a RAG demo and a production system is how it handles the messy reality of enterprise data.

Stop treating your documents as simple strings of text. If you want your AI to understand your business, you must respect the structure of your documents. By implementing semantic chunking and unlocking the visual data within your charts, you transform your RAG system from a "keyword searcher" into a true "knowledge assistant."

Dippu Kumar Singh is an AI architect and data engineer.

Ria.city






Read also

Frigid conditions continue, localized lake flakes

Swept to Pakistan by floods 2.5 yrs ago, 2 Indians return to find kin dead or ailing; 7 repatriated after completing jail terms

He’s Proven – Sporting Director Delighted At Capture From Sunderland

News, articles, comments, with a minute-by-minute update, now on Today24.pro

Today24.pro — latest news 24/7. You can add your news instantly now — here




Sports today


Новости тенниса


Спорт в России и мире


All sports news today





Sports in Russia today


Новости России


Russian.city



Губернаторы России









Путин в России и мире







Персональные новости
Russian.city





Friends of Today24

Музыкальные новости

Персональные новости