Add news
March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024 December 2024 January 2025 February 2025 March 2025 April 2025 May 2025 June 2025 July 2025 August 2025 September 2025 October 2025 November 2025 December 2025 January 2026
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28
29
30
31
News Every Day |

How AI-induced cultural stagnation is already happening

Generative AI was trained on centuries of art and writing produced by humans.

But scientists and critics have wondered what would happen once AI became widely adopted and started training on its outputs.

A new study points to some answers.

In January 2026, artificial intelligence researchers Arend Hintze, Frida Proschinger Åström, and Jory Schossau published a study showing what happens when generative AI systems are allowed to run autonomously—generating and interpreting their own outputs without human intervention.

The researchers linked a text-to-image system with an image-to-text system and let them iterate—image, caption, image, caption—over and over and over.

Regardless of how diverse the starting prompts were—and regardless of how much randomness the systems were allowed—the outputs quickly converged onto a narrow set of generic, familiar visual themes: atmospheric cityscapes, grandiose buildings, and pastoral landscapes. Even more striking, the system quickly “forgot” its starting prompt.

The researchers called the outcomes “visual elevator music”—pleasant and polished, yet devoid of any real meaning.

For example, they started with the image prompt, “The Prime Minister pored over strategy documents, trying to sell the public on a fragile peace deal while juggling the weight of his job amidst impending military action.” The resulting image was then captioned by AI. This caption was used as a prompt to generate the next image.

After repeating this loop, the researchers ended up with a bland image of a formal interior space—no people, no drama, no real sense of time and place.

As a computer scientist who studies generative models and creativity, I see the findings from this study as an important piece of the debate over whether AI will lead to cultural stagnation.

The results show that generative AI systems themselves tend toward homogenization when used autonomously and repeatedly. They even suggest that AI systems are currently operating in this way by default.

The familiar is the default

This experiment may appear beside the point: Most people don’t ask AI systems to endlessly describe and regenerate their own images. The convergence to a set of bland, stock images happened without retraining. No new data was added. Nothing was learned. The collapse emerged purely from repeated use.

But I think the setup of the experiment can be thought of as a diagnostic tool. It reveals what generative systems preserve when no one intervenes.

This has broader implications, because modern culture is increasingly influenced by exactly these kinds of pipelines. Images are summarized into text. Text is turned into images. Content is ranked, filtered, and regenerated as it moves between words, images, and videos. New articles on the web are now more likely to be written by AI than humans. Even when humans remain in the loop, they are often choosing from AI-generated options rather than starting from scratch.

The findings of this recent study show that the default behavior of these systems is to compress meaning toward what is most familiar, recognizable, and easy to regenerate.

Cultural stagnation or acceleration?

For the past few years, skeptics have warned that generative AI could lead to cultural stagnation by flooding the web with synthetic content that future AI systems then train on. Over time, the argument goes, this recursive loop would narrow diversity and innovation.

Champions of the technology have pushed back, pointing out that fears of cultural decline accompany every new technology. Humans, they argue, will always be the final arbiter of creative decisions.

What has been missing from this debate is empirical evidence showing where homogenization actually begins.

The new study does not test retraining on AI-generated data. Instead, it shows something more fundamental: Homogenization happens before retraining even enters the picture. The content that generative AI systems naturally produce—when used autonomously and repeatedly—is already compressed and generic.

This reframes the stagnation argument. The risk is not only that future models might train on AI-generated content, but that AI-mediated culture is already being filtered in ways that favor the familiar, the describable, and the conventional.

Retraining would amplify this effect. But it is not its source.

This is no moral panic

Skeptics are right about one thing: Culture has always adapted to new technologies. Photography did not kill painting. Film did not kill theater. Digital tools have enabled new forms of expression.

But those earlier technologies never forced culture to be endlessly reshaped across various mediums at a global scale. They did not summarize, regenerate and rank cultural products—news stories, songs, memes, academic papers, photographs, or social media posts—millions of times per day, guided by the same built-in assumptions about what is “typical.”

The study shows that when meaning is forced through such pipelines repeatedly, diversity collapses not because of bad intentions, malicious design or corporate negligence, but because only certain kinds of meaning survive the text-to-image-to-text repeated conversions.

This does not mean cultural stagnation is inevitable. Human creativity is resilient. Institutions, subcultures, and artists have always found ways to resist homogenization. But in my view, the findings of the study show that stagnation is a real risk—not a speculative fear—if generative systems are left to operate in their current iteration.

They also help clarify a common misconception about AI creativity: Producing endless variations is not the same as producing innovation. A system can generate millions of images while exploring only a tiny corner of cultural space.

In my own research on creative AI, I found that novelty requires designing AI systems with incentives to deviate from the norms. Without it, systems optimize for familiarity because familiarity is what they have learned best. The study reinforces this point empirically. Autonomy alone does not guarantee exploration. In some cases, it accelerates convergence.

This pattern already emerged in the real world: One study found that AI-generated lesson plans featured the same drift toward conventional, uninspiring content, underscoring that AI systems converge toward what’s typical rather than what’s unique or creative.

Lost in translation

Whenever you write a caption for an image, details will be lost. Likewise, for generating an image from text. And this happens whether it’s being performed by a human or a machine.

In that sense, the convergence that took place is not a failure that’s unique to AI. It reflects a deeper property of bouncing from one medium to another. When meaning passes repeatedly through two different formats, only the most stable elements persist.

But by highlighting what survives during repeated translations between text and images, the authors are able to show that meaning is processed inside generative systems with a quiet pull toward the generic.

The implication is sobering: Even with human guidance—whether that means writing prompts, selecting outputs, or refining results—these systems are still stripping away some details and amplifying others in ways that are oriented toward what’s “average.”

If generative AI is to enrich culture rather than flatten it, I think systems need to be designed in ways that resist convergence toward statistically average outputs. There can be rewards for deviation and support for less common and less mainstream forms of expression.

The study makes one thing clear: Absent these interventions, generative AI will continue to drift toward mediocre and uninspired content.

Cultural stagnation is no longer speculation. It’s already happening.


Ahmed Elgammal is a professor of computer science and director of the Art & AI Lab at Rutgers University.

This article is republished from The Conversation under a Creative Commons license. Read the original article.


Ria.city






Read also

The gay glass ceiling still hasn’t been shattered

The DJI Mini 5 Pro Fly More Combo has hit its best-ever price at Amazon — save $500 right now

CFOs Prepare for AI by Modernizing Payments

News, articles, comments, with a minute-by-minute update, now on Today24.pro

Today24.pro — latest news 24/7. You can add your news instantly now — here




Sports today


Новости тенниса


Спорт в России и мире


All sports news today





Sports in Russia today


Новости России


Russian.city



Губернаторы России









Путин в России и мире







Персональные новости
Russian.city





Friends of Today24

Музыкальные новости

Персональные новости