Add news
March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024 December 2024 January 2025 February 2025 March 2025 April 2025 May 2025 June 2025 July 2025 August 2025 September 2025 October 2025 November 2025 December 2025 January 2026
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28
29
30
31
News Every Day |

More Data Isn’t Always Better for AI Decisions

For decades, the prevailing view in artificial intelligence (AI) and analytics has been “more data is better.” Larger datasets are often associated with improved model accuracy and stronger performance across unpredictable scenarios. This assumption has driven enterprises to invest heavily in data acquisition, and the computing power required to process ever-expanding volumes of information.

Rethinking Data

MIT researchers asked a different question: What is the minimum amount of data required to guarantee an optimal decision? Their work focuses on structured decision-making problems under uncertainty, where outcomes depend on unknown parameters such as costs, demand or risk factors. Instead of treating data as something to be maximized, the researchers treat it as something that can be mathematically bounded.

The framework characterizes how uncertainty shapes the decision space. Each possible configuration of unknown parameters corresponds to a region where a particular decision is optimal. A dataset is considered sufficient if it provides enough information to determine which region contains the true parameters. If the dataset cannot rule out a region that would lead to a different optimal decision, more data is required. If it can, additional data adds no decision-making value.

The researchers developed an algorithm that systematically tests whether any unseen scenario could overturn the current optimal decision. If such a scenario exists, the algorithm identifies exactly what additional data point would resolve that uncertainty. If not, it certifies that the existing dataset is sufficient. A second algorithm then computes the optimal decision using only that minimal dataset.

Implications for AI and Banks

The implications of this research are particularly striking for banks and financial institutions that rely on large historical datasets for credit modeling, fraud detection, liquidity management and portfolio optimization. In many cases, firms continue to collect and process vast amounts of data in pursuit of marginal accuracy gains, even when those gains do not materially change decisions.

This research also aligns with the growing interest in small and specialized models designed for specific tasks rather than general-purpose intelligence. Smaller models trained on sufficient datasets are easier to audit and less costly. PYMNTS has reported on this parallel shift underway inside financial services, where institutions are reassessing whether ever-larger models and datasets actually translate into better outcomes.

For financial institutions facing regulatory scrutiny, the ability to demonstrate that a decision is optimal based on a clearly defined and minimal dataset can improve transparency and governance.

The work also reframes the economics of data. Data is costly to collect, store, secure and govern. Reducing data requirements without sacrificing decision quality can lower infrastructure spending, shorten model development cycles, and reduce exposure to data-privacy and retention risks.

That tension between data abundance and decision quality has already surfaced in financial crime and real-time risk systems. PYMNTS has covered that as banks move toward real-time fraud detection and payments monitoring, excessive or poorly curated data can slow systems and increase false positives. In those environments, relevance and precision increasingly matter more than volume.

Efficient Decision Systems

The researchers emphasize that their framework does not argue against data altogether, but against unnecessary data. The goal is not to approximate decisions with less information, but to identify the precise information needed to guarantee the best possible choice.

Experts say the work introduces a new way of thinking about data efficiency in AI. Rather than treating model performance as a function of scale alone, it ties performance directly to decision structure and uncertainty. If successful, the approach could influence how AI systems are designed across sectors where data collection is expensive or constrained, including finance, energy, healthcare and supply chains.

For all PYMNTS AI coverage, subscribe to the daily AI Newsletter.

The post More Data Isn’t Always Better for AI Decisions appeared first on PYMNTS.com.

Ria.city






Read also

More AI in crime-fighting is on the wcay despite West Midlands Police row

College Hoops Today: Coyotes Outplaying Projections

Vote now: Bay Area News Group boys athlete of the week

News, articles, comments, with a minute-by-minute update, now on Today24.pro

Today24.pro — latest news 24/7. You can add your news instantly now — here




Sports today


Новости тенниса


Спорт в России и мире


All sports news today





Sports in Russia today


Новости России


Russian.city



Губернаторы России









Путин в России и мире







Персональные новости
Russian.city





Friends of Today24

Музыкальные новости

Персональные новости