Add news
March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024 December 2024 January 2025 February 2025 March 2025 April 2025 May 2025 June 2025 July 2025 August 2025 September 2025 October 2025 November 2025 December 2025 January 2026
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
News Every Day |

Listen Labs raises $69M after viral billboard hiring stunt to scale AI customer interviews

Alfred Wahlforss was running out of options. His startup, Listen Labs, needed to hire over 100 engineers, but competing against Mark Zuckerberg's $100 million offers seemed impossible. So he spent $5,000 — a fifth of his marketing budget — on a billboard in San Francisco displaying what looked like gibberish: five strings of random numbers.

The numbers were actually AI tokens. Decoded, they led to a coding challenge: build an algorithm to act as a digital bouncer at Berghain, the Berlin nightclub famous for rejecting nearly everyone at the door. Within days, thousands attempted the puzzle. 430 cracked it. Some got hired. The winner flew to Berlin, all expenses paid.

That unconventional approach has now attracted $69 million in Series B funding, led by Ribbit Capital with participation from Evantic and existing investors Sequoia Capital, Conviction, and Pear VC. The round values Listen Labs at $500 million and brings its total capital to $100 million. In nine months since launch, the company has grown annualized revenue by 15x to eight figures and conducted over one million AI-powered interviews.

"When you obsess over customers, everything else follows," Wahlforss said in an interview with VentureBeat. "Teams that use Listen bring the customer into every decision, from marketing to product, and when the customer is delighted, everyone is."

Why traditional market research is broken, and what Listen Labs is building to fix it

Listen's AI researcher finds participants, conducts in-depth interviews, and delivers actionable insights in hours, not weeks. The platform replaces the traditional choice between quantitative surveys — which provide statistical precision but miss nuance—and qualitative interviews, which deliver depth but cannot scale.

Wahlforss explained the limitation of existing approaches: "Essentially surveys give you false precision because people end up answering the same question... You can't get the outliers. People are actually not honest on surveys." The alternative, one-on-one human interviews, "gives you a lot of depth. You can ask follow up questions. You can kind of double check if they actually know what they're talking about. And the problem is you can't scale that."

The platform works in four steps: users create a study with AI assistance, Listen recruits participants from its global network of 30 million people, an AI moderator conducts in-depth interviews with follow-up questions, and results are packaged into executive-ready reports including key themes, highlight reels, and slide decks.

What distinguishes Listen's approach is its use of open-ended video conversations rather than multiple-choice forms. "In a survey, you can kind of guess what you should answer, and you have four options," Wahlforss said. "Oh, they probably want me to buy high income. Let me click on that button versus an open ended response. It just generates much more honesty."

The dirty secret of the $140 billion market research industry: rampant fraud

Listen finds and qualifies the right participants in its global network of 30 million people. But building that panel required confronting what Wahlforss called "one of the most shocking things that we've learned when we entered this industry"—rampant fraud.

"Essentially, there's a financial transaction involved, which means there will be bad players," he explained. "We actually had some of the largest companies, some of them have billions in revenue, send us people who claim to be kind of enterprise buyers to our platform and our system immediately detected, like, fraud, fraud, fraud, fraud, fraud."

The company built what it calls a "quality guard" that cross-references LinkedIn profiles with video responses to verify identity, checks consistency across how participants answer questions, and flags suspicious patterns. The result, according to Wahlforss: "People talk three times more. They're much more honest when they talk about sensitive topics like politics and mental health."

Emeritus, an online education company that uses Listen, reported that approximately 20% of survey responses previously fell into the fraudulent or low-quality category. With Listen, they reduced this to almost zero. "We did not have to replace any responses because of fraud or gibberish information," said Gabrielli Tiburi, Assistant Manager of Customer Insights at Emeritus.

How Microsoft, Sweetgreen, and Chubbies are using AI interviews to build better products

The speed advantage has proven central to Listen's pitch. Traditional customer research at Microsoft could take four to six weeks to generate insights. "By the time we get to them, either the decision has been made or we lose out on the opportunity to actually influence it," said Romani Patel, Senior Research Manager at Microsoft.

With Listen, Microsoft can now get insights in days, and in many cases, within hours.

The platform has already powered several high-profile initiatives. Microsoft used Listen Labs to collect global customer stories for its 50th anniversary celebration. "We wanted users to share how Copilot is empowering them to bring their best self forward," Patel said, "and we were able to collect those user video stories within a day." Traditionally, that kind of work would have taken six to eight weeks.

Simple Modern, an Oklahoma-based drinkware company, used Listen to test a new product concept. The process took about an hour to write questions, an hour to launch the study, and 2.5 hours to receive feedback from 120 people across the country. "We went from 'Should we even have this product?' to 'How should we launch it?'" said Chris Hoyle, the company's Chief Marketing Officer.

Chubbies, the shorts brand, achieved a 24x increase in youth research participation—growing from 5 to 120 participants — by using Listen to overcome the scheduling challenges of traditional focus groups with children. "There's school, sports, dinner, and homework," explained Lauren Neville, Director of Insights and Innovation. "I had to find a way to hear from them that fit into their schedules."

The company also discovered product issues through AI interviews that might have gone undetected otherwise. Wahlforss described how the AI "through conversations, realized there were like issues with the the kids short line, and decided to, like, interview hundreds of kids. And I understand that there were issues in the liner of the shorts and that they were, like, scratchy, quote, unquote, according to the people interviewed." The redesigned product became "a blockbuster hit."

The Jevons paradox explains why cheaper research creates more demand, not less

Listen Labs is entering a massive but fragmented market. Wahlforss cited research from Andreessen Horowitz estimating the market research industry at roughly $140 billion annually, populated by legacy players — some with more than a billion dollars in revenue — that he believes are vulnerable to disruption.

"There are very much existing budget lines that we are replacing," Wahlforss said. "Why we're replacing them is that one, they're super costly. Two, they're kind of stuck in this old paradigm of choosing between a survey or interview, and they also take months to work with."

But the more intriguing dynamic may be that AI-powered research doesn't just replace existing spending — it creates new demand. Wahlforss invoked the Jevons paradox, an economic principle that occurs when technological advancements make a resource more efficient to use, but increased efficiency leads to increased overall consumption rather than decreased consumption.

"What I've noticed is that as something gets cheaper, you don't need less of it. You want more of it," Wahlforss explained. "There's infinite demand for customer understanding. So the researchers on the team can do an order of magnitude more research, and also other people who weren't researchers before can now do that as part of their job."

Inside the elite engineering team that built Listen Labs before they had a working toilet

Listen Labs traces its origins to a consumer app that Wahlforss and his co-founder built after meeting at Harvard. "We built this consumer app that got 20,000 downloads in one day," Wahlforss recalled. "We had all these users, and we were thinking like, okay, what can we do to get to know them better? And we built this prototype of what Listen is today."

The founding team brings an unusual pedigree. Wahlforss's co-founder "was the national champion in competitive programming in Germany, and he worked at Tesla Autopilot." The company claims that 30% of its engineering team are medalists from the International Olympiad in Informatics — the same competition that produced the founders of Cognition, the AI coding startup.

The Berghain billboard stunt generated approximately 5 million views across social media, according to Wahlforss. It reflected the intensity of the talent war in the Bay Area.

"We had to do these things because some of our, like early employees, joined the company before we had a working toilet," he said. "But now we fixed that situation."

The company grew from 5 to 40 employees in 2024 and plans to reach 150 this year. It hires engineers for non-engineering roles across marketing, growth, and operations — a bet that in the AI era, technical fluency matters everywhere.

Synthetic customers and automated decisions: what Listen Labs is building next

Wahlforss outlined an ambitious product roadmap that pushes into more speculative territory. The company is building "the ability to simulate your customers, so you can take all of those interviews we've done, and then extrapolate based on that and create synthetic users or simulated user voices."

Beyond simulation, Listen aims to enable automated action based on research findings. "Can you not just make recommendations, but also create spawn agents to either change things in code or some customer churns? Can you give them a discount and try to bring them back?"

Wahlforss acknowledged the ethical implications. "Obviously, as you said, there's kind of ethical concerns there. Of like, automated decision making overall can be bad, but we will have considerable guardrails to make sure that the companies are always in the loop."

The company already handles sensitive data with care. "We don't train on any of the data," Wahlforss said. "We will also scrub any sensitive PII automatically so the model can detect that. And there are times when, for example, you work with investors, where if you accidentally mention something that could be material, non public information, the AI can actually detect that and remove any information like that."

How AI could reshape the future of product development

Perhaps the most provocative implication of Listen's model is how it could reshape product development itself. Wahlforss described a customer — an Australian startup — that has adopted what amounts to a continuous feedback loop.

"They're based in Australia, so they're coding during the day, and then in their night, they're releasing a Listen study with an American audience. Listen validates whatever they built during the day, and they get feedback on that. They can then plug that feedback directly into coding tools like Claude Code and iterate."

The vision extends Y Combinator's famous dictum — "write code, talk to users" — into an automated cycle. "Write code is now getting automated. And I think like talk to users will be as well, and you'll have this kind of infinite loop where you can start to ship this truly amazing product, almost kind of autonomously."

Whether that vision materializes depends on factors beyond Listen's control — the continued improvement of AI models, enterprise willingness to trust automated research, and whether speed truly correlates with better products. A 2024 MIT study found that 95% of AI pilots fail to move into production, a statistic Wahlforss cited as the reason he emphasizes quality over demos.

"I'm constantly have to emphasize like, let's make sure the quality is there and the details are right," he said.

But the company's growth suggests appetite for the experiment. Microsoft's Patel said Listen has "removed the drudgery of research and brought the fun and joy back into my work." Chubbies is now pushing its founder to give everyone in the company a login. Sling Money, a stablecoin payments startup, can create a survey in ten minutes and receive results the same day.

"It's a total game changer," said Ali Romero, Sling Money's marketing manager.

Wahlforss has a different phrase for what he's building. When asked about the tension between speed and rigor — the long-held belief that moving fast means cutting corners — he cited Nat Friedman, the former GitHub CEO and Listen investor, who keeps a list of one-liners on his website.

One of them: "Slow is fake."

It's an aggressive claim for an industry built on methodological caution. But Listen Labs is betting that in the AI era, the companies that listen fastest will be the ones that win. The only question is whether customers will talk back.

Ria.city






Read also

Canada May Consider Euthanizing Disabled Newborn Babies

Ram Kapoor and Prachi Desai starrer 'Kasamh Se' turns 20; Ektaa Kapoor recalls some fond memories

Pete Hegseth Kicks Off ‘Arsenal of Freedom’ Tour

News, articles, comments, with a minute-by-minute update, now on Today24.pro

Today24.pro — latest news 24/7. You can add your news instantly now — here




Sports today


Новости тенниса


Спорт в России и мире


All sports news today





Sports in Russia today


Новости России


Russian.city



Губернаторы России









Путин в России и мире







Персональные новости
Russian.city





Friends of Today24

Музыкальные новости

Персональные новости