Add news
March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024 December 2024 January 2025 February 2025 March 2025 April 2025 May 2025 June 2025 July 2025 August 2025 September 2025 October 2025 November 2025 December 2025 January 2026
1 2 3 4 5 6 7 8 9 10 11 12 13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
News Every Day |

The solar boom has a dirty secret. Here’s how to avoid another mountain of waste that can’t be recycled

RenNeo / shutterstock

Solar power has a dark side: panels are still built to be thrown away, and we risk creating a mountain of waste that locks away valuable minerals.

The world already faces up to 250 million tonnes of solar waste by 2050, as panels installed during the solar boom of the 2000s and 2010s reach the end of their service life.

These panels were not designed to be repaired, refurbished, or disassembled. Indeed, current recycling processes mainly extract glass and aluminium, while the materials that carry the highest economic and strategic value such as silver, copper and high-grade silicon are generally lost in the process.

The industry now faces a narrow window to rethink. Without a shift in design, the energy transition could end up shifting environmental pressures rather than reducing them. Building low-carbon technology is essential, but low-carbon does not inherently mean sustainable.

A booming industry designed for the dump

The average lifespan of solar modules is about 25 to 30 years. This means a massive wave of installations from the early 2000s is now reaching the end of its life cycle. Countries with mature solar markets like Germany, Australia, Japan and the US are already seeing a sharp increase in the number of panels being taken out of service.

The challenge lies not only in the scale of the waste but also in the very design of the panels. To survive decades of weather, solar panels are built by stacking layers of glass, cells and plastic, then bonding them together so tightly with strong adhesives that they become a single, inseparable unit.

You can think of a solar panel like an industrial-strength sandwich. VectorMine / shutterstock

But this durability has a downside. Because the layers are so tightly bonded, they are exceptionally difficult to peel apart, effectively preventing us from fixing the panels when they break or recovering materials when they are thrown away (those materials could generate US$15 billion (£11 billion) in economic value by 2050).

The limits of recycling

In any case, recycling should be a last resort because it destroys much of the embedded value. That’s because current processes are crude, mostly shredding panels to recover cheap aluminium and glass while losing high value metals.

For instance, while silver represents only 0.14% of a solar panel’s mass, it accounts for over 40% of its material value and about 10% of its total cost. Yet it is rarely recovered when recycling. During standard recycling, solar panels are crushed. The silver is pulverised into microscopic particles that become mixed with glass, silicon and plastic residues, making it too difficult and expensive to separate.

That’s why strategies that aim to extend the life of solar panels – such as repair and reuse – are vastly superior to recycling. They preserve the value of these products, and avoid the massive energy cost of industrial shredding. They keep valuable materials in circulation and reduce the need to extract new raw materials. They can even generate new revenue for owners. But this circular vision is only viable if solar panels are designed to be taken apart and repaired.

Designing panels for a circular future

Moving towards such an approach means redesigning panels so they can be repaired, upgraded and ultimately disassembled without damaging or destroying the components inside. The idea of designing for disassembly, common in other sectors, is increasingly essential for solar too.

Instead of permanent adhesives and fully laminated layers, panels can be built using modular designs and reversible connections. Components such as frames, junction boxes and connectors should be removable, while mechanical fixings or smart adhesives that release only at high temperatures can allow glass and cells to be separated more easily.

Standardising components and improving documentation would further support repairers, refurbishers and recyclers throughout a panel’s life cycle. In short, the next generation of solar panels must be designed to last longer, be repairable, and use fewer critical materials — not simply to maximise short-term energy output.

Digital tools can help

If you want to repair or recycle a panel years from now, you’ll need to know what materials it contains, what adhesives were used and how it was assembled. Digital tools can help here by storing information, essentially acting like a car’s logbook or a patient’s medical record.

One promising example is the EU’s new Digital Product Passport. These passports will include guidance on repair options, disassembly, hazardous substances, lifecycle history and end-of-life handling. They will be introduced progressively for priority product groups from 2027, with further expansion to many other products, expected towards around 2030.

The Digital Product Passport acts as a static “ingredients list” for a solar panel. It shows what a panel is made of and how it should be handled. Digital twins, by contrast, function more like a real-time monitoring system.

Continuously updated with performance data, they can signal when a panel is under-performing, has become too dusty, or needs repairing. Used together, these tools can help technicians identify which parts can be be repaired or reused and ensure solar panels are safely dismantled at the end of their life.

However, even the best digital twin isn’t much use if the panel itself is glued shut and designed for the dump. Without panels that are built to be repaired or taken apart, digitalisation will offer only marginal benefits.

Digital tools also have their own environmental footprint, from sensors to data storage, which makes it even more important that they support genuinely repairable designs rather than compensate for poor ones. We must rethink how we design solar panels right now, before today’s solar boom locks in tomorrow’s waste problem.

Rabia Charef is a Senior Research Associate at Lancaster University and works as an independent consultant on circular economy and digitalisation. She has previously worked on research related to the end-of-life of solar photovoltaic panels. This article is based on a review of the academic literature and does not draw on unpublished project data. The views expressed are the author’s own.

Ria.city






Read also

White House Backs Down From Being “Flexible” on Hyde Amendment

Trump Weighs Response to Iran Crackdown, Tehran Says Communication Open With US

A Brief History of Men Showing Leg

News, articles, comments, with a minute-by-minute update, now on Today24.pro

Today24.pro — latest news 24/7. You can add your news instantly now — here




Sports today


Новости тенниса


Спорт в России и мире


All sports news today





Sports in Russia today


Новости России


Russian.city



Губернаторы России









Путин в России и мире







Персональные новости
Russian.city





Friends of Today24

Музыкальные новости

Персональные новости