Add news
March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024 December 2024 January 2025 February 2025 March 2025 April 2025 May 2025 June 2025 July 2025 August 2025 September 2025 October 2025 November 2025 December 2025
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
29
30
31
News Every Day |

I pioneered machine teaching at Microsoft. Building AI agents is like building a basketball team, not drafting a player 

Salesforce’s latest agent testing/builder tool and Jeff Bezos’s new AI venture focused on practical industrial applications of AI show that enterprises are inching towards autonomous systems. It’s meaningful progress because robust guardrails, testing and evaluation are the foundation of agentic AI. But the next step that’s largely missing right now is practice, giving teams of agents repeated, structured experience. As the pioneer of Machine Teaching, a methodology for training autonomous systems that has been deployed across several Fortune 500 companies, I’ve experienced the impact of agent practice while building and deploying over 200 autonomous multi-agent systems at Microsoft and now at AMESA for enterprises around the globe. 

Every CEO investing in AI faces the same problem: spending billions on pilots that may or may not deliver real autonomy. Agents seem to excel in demos but stall when real-world complexity hits. As a result, business leaders do not trust AI to act independently on billion-dollar machinery or workflows. Leaders are searching for the next phase of AI’s capability: true enterprise expertise. We shouldn’t ask how much knowledge an agent can retain, but rather if it has had the opportunity to develop expertise by practicing as humans do. 

The Testing Illusion 

Just as human teams develop expertise through repetition, feedback and clear roles, AI agents must develop skills inside realistic practice environments with structured orchestration. Practice is what turns intelligence into reliable, autonomous performance.

Many enterprise leaders still assume that a few major LLM companies will develop powerful enough models and massive data sets to manage complex enterprise operations end-to-end via “Artificial General Intelligence.” 

But that isn’t how enterprises work. 

No critical process, whether it be supply chain planning or energy optimization, is run by one person with one skill set. Think of a basketball team. Each player needs to work on their skills, whether it be dribbling or jump shot, but each player also has a role on the team. A center’s purpose is different from a point guard’s. Teams succeed with defined roles, expertise and responsibilities. AI needs that same structure. 

Even if you did create the perfect model or reach AGI, I’d predict the agents would still fail in production because they never encountered variability, drift, anomalies, or the subtle signals that humans navigate every day. They haven’t differentiated their skill sets or learned when to act or pause. They also haven’t been exposed to expert feedback loops that shape real judgment.

How Machine Teaching Creates Practice

Machine Teaching provides the structure that modern agentic systems need. It guides agents to:

  • Perceive the environment correctly.
  • Master basic skills that mirror human operators.
  • Learn higher-level strategies that reflect expert judgment.
  • Coordinate under a supervisor agent that selects the right strategy at the right time.

Take one Fortune 500 company I worked with that was improving a nitrogen manufacturing process. Our agents practiced inside the AMESA Agent Cloud, improving through experimentation and feedback. In less than one day, the agent teams outperformed a custom-built industrial control system that other automation tools and single-agent AI applications could not match.

This resulted in an estimated $1.2 million in annual efficiency gains, and more importantly, gave leadership the confidence to deploy autonomy at scale because the system behaved like their best operators. 

Why CEOs and Leaders Need Practiced AI

Practice is what drives true autonomy in agents. I invite every leader to begin reframing a few assumptions:

  1. Stop thinking in terms of models and think in terms of teams. Every day interactions with systems like ChatGPT or Claude are powerful, but they reinforce a misconception that large language models are the path to enterprise autonomy.  Autonomy emerges from specialized agents that take on perception, control, planning and supervisory roles through a wide variety of technologies. 
  2. Identify where expertise is disappearing and preserve it within agents. Many essential operations rely on experts who are nearing retirement. CEOs should ask which processes would be most vulnerable if these experts left tomorrow. Those areas are the ideal starting point for a Machine Teaching approach. Let your top operators teach a team of agents in a safe practice environment so that their expertise becomes scalable and permanent.
  3. Recognize that you already have the infrastructure for autonomy. Years of investment in sensors, MES and SCADA systems, ERP integrations and IoT telemetry already form your organization’s backbone of digital twins and high-fidelity simulations. Success requires orchestration, structure, and leveraging the data foundation you already built.

The Payoff of Practice

When enterprises give agents room to practice before deployment, several things happen:  

  • Human teams begin to trust the AI and understand its boundaries. 
  • Leaders can calculate true ROI rather than speculative projections. 
  • Agents become safer, more consistent and aligned with expert judgment. 
  • Human teams are elevated rather than replaced because AI now understands their workflows and supports them.

Agents won’t truly perform without experience, and experience only comes from practice. The companies that invest in and embrace this framing will be the ones to break out of pilot purgatory and see real impact.

The opinions expressed in Fortune.com commentary pieces are solely the views of their authors and do not necessarily reflect the opinions and beliefs of Fortune.

This story was originally featured on Fortune.com

Ria.city






Read also

‘Made some lame excuse’: Trump officials are openly dodging Congress’ lawful demands

Louisiana Tech looks to quiet Coastal Carolina in Independence Bowl

Huge fire rips through seaside amusement arcade with neighbours warned to shut windows

News, articles, comments, with a minute-by-minute update, now on Today24.pro

Today24.pro — latest news 24/7. You can add your news instantly now — here




Sports today


Новости тенниса


Спорт в России и мире


All sports news today





Sports in Russia today


Новости России


Russian.city



Губернаторы России









Путин в России и мире







Персональные новости
Russian.city





Friends of Today24

Музыкальные новости

Персональные новости