Add news
March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024 December 2024 January 2025 February 2025 March 2025 April 2025 May 2025 June 2025 July 2025 August 2025 September 2025 October 2025 November 2025 December 2025
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25
26
27
28
29
30
31
News Every Day |

Google is betting on carbon capture tech to lower data center emissions. Here’s how it works

As AI data centers spring up across the country, their energy demand and resulting greenhouse gas emissions are raising concerns. With servers and energy-intensive cooling systems constantly running, these buildings can use anywhere from a few megawatts of power for a small data center to more than 100 megawatts for a hyperscale data center. To put that in perspective, the average large natural gas power plant built in the U.S. generates less than 1,000 megawatts.

When the power for these data centers comes from fossil fuels, they can become major sources of climate-warming emissions in the atmosphere—unless the power plants capture their greenhouse gases first and then lock them away.

Google recently entered into a unique corporate power purchase agreement to support the construction of a natural gas power plant in Illinois designed to do exactly that through carbon capture and storage.

So how does carbon capture and storage, or CCS, work for a project like this?

I am an engineer who wrote a 2024 book about various types of carbon storage. Here’s the short version of what you need to know.

How CCS works

When fossil fuels are burned to generate electricity, they release carbon dioxide, a powerful greenhouse gas that remains in the atmosphere for centuries. As these gases accumulate in the atmosphere, they act like a blanket, holding heat close to the Earth’s surface. Too high of a concentration heats up the Earth too much, setting off climate changes, including worsening heat waves, rising sea levels, and intensifying storms.

Carbon capture and storage involves capturing carbon dioxide from power plants, industrial processes, or even directly from the air and then transporting it, often through pipelines, to sites where it can be safely injected underground for permanent storage.

The carbon dioxide might be transported as a supercritical gas—which is right at the phase change from liquid to gas and has the properties of both—or dissolved in a liquid. Once injected deep underground, the carbon dioxide can become permanently trapped in the geologic structure, dissolve in brine, or become mineralized, turning it to rock.

The goal of carbon storage is to ensure that carbon dioxide can be kept out of the atmosphere for a long time.

Types of underground carbon storage

There are several options for storing carbon dioxide underground.

Depleted oil and natural gas reservoirs have plentiful storage space and the added benefit that most are already mapped and their limits understood. They already held hydrocarbons in place for millions of years.

Carbon dioxide can also be injected into working oil or gas reservoirs to push out more of those fossil fuels while leaving most of the carbon dioxide behind. This method, known as enhanced oil and gas recovery, is the most common one used by carbon capture and storage projects in the U.S. today, and one reason CCS draws complaints from environmental groups.

Volcanic basalt rock and carbonate formations are considered good candidates for safe and long-term geological storage because they contain calcium and magnesium ions that interact with carbon dioxide, turning it into minerals. Iceland pioneered this method using its bedrock of volcanic basalt for carbon storage. Basalt also covers most of the oceanic crust, and scientists have been exploring the potential for sub-seafloor storage reservoirs.

How Iceland uses basalt to turn captured carbon dioxide into solid minerals.

In the U.S., a fourth option likely has the most potential for industrial carbon dioxide storage—deep saline aquifers, which is what Google plans to use. These widely distributed aquifers are porous and permeable sediment formations consisting of sandstone, limestone, or dolostone. They’re filled with highly mineralized groundwater that cannot be used directly for drinking water but is very suitable for storing CO2.

Deep saline aquifers also have large storage capacities, ranging from about 1,000 to 20,000 gigatons. In comparison, the nation’s total carbon emissions from fossil fuels in 2024 were about 4.9 gigatons.

As of fall 2025, 21 industrial facilities across the U.S. used carbon capture and storage, including industries producing natural gas, fertilizer, and biofuels, according to the Global CCS Institute’s 2025 report. Five of those use deep saline aquifers, and the rest involve enhanced oil or gas recovery. Eight more industrial carbon capture facilities were under construction.

Google’s plan is unique because it involves a power purchase agreement that makes building the power plant with carbon capture and storage possible.

Google’s deep saline aquifer storage plan

Google’s 400-megawatt natural gas power plant, to be built with Broadwing Energy, is designed to capture about 90% of the plant’s carbon dioxide emissions and pipe them underground for permanent storage in a deep saline aquifer in the nearby Mount Simon sandstone formation.

The Mount Simon sandstone formation is a huge saline aquifer that lies underneath most of Illinois, southwestern Indiana, southern Ohio, and western Kentucky. It has a layer of highly porous and permeable sandstone that makes it an ideal candidate for carbon dioxide injection. To keep the carbon dioxide in a supercritical state, that layer needs to be at least half a mile (800 meters) deep.

A thick layer of Eau Claire shale sits above the Mount Simon formation, serving as the caprock that helps prevent stored carbon dioxide from escaping. Except for some small regions near the Mississippi River, Eau Claire shale is considerably thick—more than 300 feet (90 meters)—throughout most of the Illinois basin.

The estimated storage capacity of the Mount Simon formation ranges from 27 gigatons to 109 gigatons of carbon dioxide.

The Google project plans to use an existing injection well site that was part of the first large-scale carbon storage demonstration in the Mount Simon formation. Food producer Archer Daniels Midland began injecting carbon dioxide there from nearby corn processing plants in 2012.

Carbon capture and storage has had challenges as the technology developed over the years, including a pipeline rupture in 2020 that forced evacuations in Satartia, Mississippi, and caused several people to lose consciousness. After a recent leak deep underground at the Archer Daniels Midland site in Illinois, the Environmental Protection Agency in 2025 required the company to improve its monitoring. Stored carbon dioxide had migrated into an unapproved area, but no threat to water supplies was reported.

Why does CCS matter?

Data centers are expanding quickly, and utilities will have to build more power capacity to keep up. The artificial intelligence company OpenAI is urging the U.S. to build 100 gigawatts of new capacity every year—doubling its current rate.

Many energy experts, including the International Energy Agency, believe carbon capture and storage will be necessary to slow climate change and keep global temperatures from reaching dangerous levels as energy demand rises.

Ramesh Agarwal is a professor of engineering at Washington University in St. Louis.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Ria.city






Read also

Looking for toys? Here’s the criteria of the Hall of Fame

Gunmen abduct Muslim travelers in Nigeria

Treat yourself — a dietitian explains why dessert can help you lose more weight and keep it off

News, articles, comments, with a minute-by-minute update, now on Today24.pro

Today24.pro — latest news 24/7. You can add your news instantly now — here




Sports today


Новости тенниса


Спорт в России и мире


All sports news today





Sports in Russia today


Новости России


Russian.city



Губернаторы России









Путин в России и мире







Персональные новости
Russian.city





Friends of Today24

Музыкальные новости

Персональные новости