Add news
March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024 December 2024 January 2025 February 2025 March 2025 April 2025 May 2025 June 2025 July 2025 August 2025 September 2025 October 2025 November 2025 December 2025
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23
24
25
26
27
28
29
30
31
News Every Day |

It’s starting to look like we’ll never come up with a good way to tell what was written by AI and what was written by humans

People and institutions are grappling with the consequences of AI-written text. Teachers want to know whether students’ work reflects their own understanding; consumers want to know whether an advertisement was written by a human or a machine.

Writing rules to govern the use of AI-generated content is relatively easy. Enforcing them depends on something much harder: reliably detecting whether a piece of text was generated by artificial intelligence.

Some studies have investigated whether humans can detect AI-generated text. For example, people who themselves use AI writing tools heavily have been shown to accurately detect AI-written text. A panel of human evaluators can even outperform automated tools in a controlled setting. However, such expertise is not widespread, and individual judgment can be inconsistent. Institutions that need consistency at a large scale therefore turn to automated AI text detectors.

The problem of AI text detection

The basic workflow behind AI text detection is easy to describe. Start with a piece of text whose origin you want to determine. Then apply a detection tool, often an AI system itself, that analyzes the text and produces a score, usually expressed as a probability, indicating how likely the text is to have been AI-generated. Use the score to inform downstream decisions, such as whether to impose a penalty for violating a rule.

This simple description, however, hides a great deal of complexity. It glosses over a number of background assumptions that need to be made explicit. Do you know which AI tools might have plausibly been used to generate the text? What kind of access do you have to these tools? Can you run them yourself, or inspect their inner workings? How much text do you have? Do you have a single text or a collection of writings gathered over time? What AI detection tools can and cannot tell you depends critically on the answers to questions like these.

There is one additional detail that is especially important: Did the AI system that generated the text deliberately embed markers to make later detection easier?

These indicators are known as watermarks. Watermarked text looks like ordinary text, but the markers are embedded in subtle ways that do not reveal themselves to casual inspection. Someone with the right key can later check for the presence of these markers and verify that the text came from a watermarked AI-generated source. This approach, however, relies on cooperation from AI vendors and is not always available.

How AI text detection tools work

One obvious approach is to use AI itself to detect AI-written text. The idea is straightforward. Start by collecting a large corpus, meaning collection of writing, of examples labeled as human-written or AI-generated, then train a model to distinguish between the two. In effect, AI text detection is treated as a standard classification problem, similar in spirit to spam filtering. Once trained, the detector examines new text and predicts whether it more closely resembles the AI-generated examples or the human-written ones it has seen before.

The learned-detector approach can work even if you know little about which AI tools might have generated the text. The main requirement is that the training corpus be diverse enough to include outputs from a wide range of AI systems.

But if you do have access to the AI tools you are concerned about, a different approach becomes possible. This second strategy does not rely on collecting large labeled datasets or training a separate detector. Instead, it looks for statistical signals in the text, often in relation to how specific AI models generate language, to assess whether the text is likely to be AI-generated. For example, some methods examine the probability that an AI model assigns to a piece of text. If the model assigns an unusually high probability to the exact sequence of words, this can be a signal that the text was, in fact, generated by that model.

Finally, in the case of text that is generated by an AI system that embeds a watermark, the problem shifts from detection to verification. Using a secret key provided by the AI vendor, a verification tool can assess whether the text is consistent with having been generated by a watermarked system. This approach relies on information that is not available from the text alone, rather than on inferences drawn from the text itself. https://www.youtube.com/embed/oUgfQAaRL6Y?wmode=transparent&start=0 AI engineer Tom Dekan demonstrates how easily commercial AI text detectors can be defeated.

Limitations of detection tools

Each family of tools comes with its own limitations, making it difficult to declare a clear winner. Learning-based detectors, for example, are sensitive to how closely new text resembles the data they were trained on. Their accuracy drops when the text differs substantially from the training corpus, which can quickly become outdated as new AI models are released. Continually curating fresh data and retraining detectors is costly, and detectors inevitably lag behind the systems they are meant to identify.

Statistical tests face a different set of constraints. Many rely on assumptions about how specific AI models generate text, or on access to those models’ probability distributions. When models are proprietary, frequently updated or simply unknown, these assumptions break down. As a result, methods that work well in controlled settings can become unreliable or inapplicable in the real world.

Watermarking shifts the problem from detection to verification, but it introduces its own dependencies. It relies on cooperation from AI vendors and applies only to text generated with watermarking enabled.

More broadly, AI text detection is part of an escalating arms race. Detection tools must be publicly available to be useful, but that same transparency enables evasion. As AI text generators grow more capable and evasion techniques more sophisticated, detectors are unlikely to gain a lasting upper hand.

Hard reality

The problem of AI text detection is simple to state but hard to solve reliably. Institutions with rules governing the use of AI-written text cannot rely on detection tools alone for enforcement.

As society adapts to generative AI, we are likely to refine norms around acceptable use of AI-generated text and improve detection techniques. But ultimately, we’ll have to learn to live with the fact that such tools will never be perfect.

Ambuj Tewari, Professor of Statistics, University of Michigan

This article is republished from The Conversation under a Creative Commons license. Read the original article.

This story was originally featured on Fortune.com

Ria.city






Read also

Paphos EOA handling situation after heavy rain and hail

Western Kentucky vs. Southern Miss: Time, Date, TV Channel, 2025 New Orleans Bowl Preview

UN rights chief calls for probe into Burkina Faso killings

News, articles, comments, with a minute-by-minute update, now on Today24.pro

Today24.pro — latest news 24/7. You can add your news instantly now — here




Sports today


Новости тенниса


Спорт в России и мире


All sports news today





Sports in Russia today


Новости России


Russian.city



Губернаторы России









Путин в России и мире







Персональные новости
Russian.city





Friends of Today24

Музыкальные новости

Персональные новости