Add news
March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024 December 2024 January 2025 February 2025 March 2025 April 2025 May 2025 June 2025 July 2025 August 2025 September 2025 October 2025 November 2025 December 2025
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19
20
21
22
23
24
25
26
27
28
29
30
31
News Every Day |

Zoom says it aced AI’s hardest exam. Critics say it copied off its neighbors.

Zoom Video Communications, the company best known for keeping remote workers connected during the pandemic, announced last week that it had achieved the highest score ever recorded on one of artificial intelligence's most demanding tests — a claim that sent ripples of surprise, skepticism, and genuine curiosity through the technology industry.

The San Jose-based company said its AI system scored 48.1 percent on the Humanity's Last Exam, a benchmark designed by subject-matter experts worldwide to stump even the most advanced AI models. That result edges out Google's Gemini 3 Pro, which held the previous record at 45.8 percent.

"Zoom has achieved a new state-of-the-art result on the challenging Humanity's Last Exam full-set benchmark, scoring 48.1%, which represents a substantial 2.3% improvement over the previous SOTA result," wrote Xuedong Huang, Zoom's chief technology officer, in a blog post.

The announcement raises a provocative question that has consumed AI watchers for days: How did a video conferencing company — one with no public history of training large language models — suddenly vault past Google, OpenAI, and Anthropic on a benchmark built to measure the frontiers of machine intelligence?

The answer reveals as much about where AI is headed as it does about Zoom's own technical ambitions. And depending on whom you ask, it's either an ingenious demonstration of practical engineering or a hollow claim that appropriates credit for others' work.

How Zoom built an AI traffic controller instead of training its own model

Zoom did not train its own large language model. Instead, the company developed what it calls a "federated AI approach" — a system that routes queries to multiple existing models from OpenAI, Google, and Anthropic, then uses proprietary software to select, combine, and refine their outputs.

At the heart of this system sits what Zoom calls its "Z-scorer," a mechanism that evaluates responses from different models and chooses the best one for any given task. The company pairs this with what it describes as an "explore-verify-federate strategy," an agentic workflow that balances exploratory reasoning with verification across multiple AI systems.

"Our federated approach combines Zoom's own small language models with advanced open-source and closed-source models," Huang wrote. The framework "orchestrates diverse models to generate, challenge, and refine reasoning through dialectical collaboration."

In simpler terms: Zoom built a sophisticated traffic controller for AI, not the AI itself.

This distinction matters enormously in an industry where bragging rights — and billions in valuation — often hinge on who can claim the most capable model. The major AI laboratories spend hundreds of millions of dollars training frontier systems on vast computing clusters. Zoom's achievement, by contrast, appears to rest on clever integration of those existing systems.

Why AI researchers are divided over what counts as real innovation

The response from the AI community was swift and sharply divided.

Max Rumpf, an AI engineer who says he has trained state-of-the-art language models, posted a pointed critique on social media. "Zoom strung together API calls to Gemini, GPT, Claude et al. and slightly improved on a benchmark that delivers no value for their customers," he wrote. "They then claim SOTA."

Rumpf did not dismiss the technical approach itself. Using multiple models for different tasks, he noted, is "actually quite smart and most applications should do this." He pointed to Sierra, an AI customer service company, as an example of this multi-model strategy executed effectively.

His objection was more specific: "They did not train the model, but obfuscate this fact in the tweet. The injustice of taking credit for the work of others sits deeply with people."

But other observers saw the achievement differently. Hongcheng Zhu, a developer, offered a more measured assessment: "To top an AI eval, you will most likely need model federation, like what Zoom did. An analogy is that every Kaggle competitor knows you have to ensemble models to win a contest."

The comparison to Kaggle — the competitive data science platform where combining multiple models is standard practice among winning teams — reframes Zoom's approach as industry best practice rather than sleight of hand. Academic research has long established that ensemble methods routinely outperform individual models.

Still, the debate exposed a fault line in how the industry understands progress. Ryan Pream, founder of Exoria AI, was dismissive: "Zoom are just creating a harness around another LLM and reporting that. It is just noise." Another commenter captured the sheer unexpectedness of the news: "That the video conferencing app ZOOM developed a SOTA model that achieved 48% HLE was not on my bingo card."

Perhaps the most pointed critique concerned priorities. Rumpf argued that Zoom could have directed its resources toward problems its customers actually face. "Retrieval over call transcripts is not 'solved' by SOTA LLMs," he wrote. "I figure Zoom's users would care about this much more than HLE."

The Microsoft veteran betting his reputation on a different kind of AI

If Zoom's benchmark result seemed to come from nowhere, its chief technology officer did not.

Xuedong Huang joined Zoom from Microsoft, where he spent decades building the company's AI capabilities. He founded Microsoft's speech technology group in 1993 and led teams that achieved what the company described as human parity in speech recognition, machine translation, natural language understanding, and computer vision.

Huang holds a Ph.D. in electrical engineering from the University of Edinburgh. He is an elected member of the National Academy of Engineering and the American Academy of Arts and Sciences, as well as a fellow of both the IEEE and the ACM. His credentials place him among the most accomplished AI executives in the industry.

His presence at Zoom signals that the company's AI ambitions are serious, even if its methods differ from the research laboratories that dominate headlines. In his tweet celebrating the benchmark result, Huang framed the achievement as validation of Zoom's strategy: "We have unlocked stronger capabilities in exploration, reasoning, and multi-model collaboration, surpassing the performance limits of any single model."

That final clause — "surpassing the performance limits of any single model" — may be the most significant. Huang is not claiming Zoom built a better model. He is claiming Zoom built a better system for using models.

Inside the test designed to stump the world's smartest machines

The benchmark at the center of this controversy, Humanity's Last Exam, was designed to be exceptionally difficult. Unlike earlier tests that AI systems learned to game through pattern matching, HLE presents problems that require genuine understanding, multi-step reasoning, and the synthesis of information across complex domains.

The exam draws on questions from experts around the world, spanning fields from advanced mathematics to philosophy to specialized scientific knowledge. A score of 48.1 percent might sound unimpressive to anyone accustomed to school grading curves, but in the context of HLE, it represents the current ceiling of machine performance.

"This benchmark was developed by subject-matter experts globally and has become a crucial metric for measuring AI's progress toward human-level performance on challenging intellectual tasks," Zoom’s announcement noted.

The company's improvement of 2.3 percentage points over Google's previous best may appear modest in isolation. But in competitive benchmarking, where gains often come in fractions of a percent, such a jump commands attention.

What Zoom's approach reveals about the future of enterprise AI

Zoom's approach carries implications that extend well beyond benchmark leaderboards. The company is signaling a vision for enterprise AI that differs fundamentally from the model-centric strategies pursued by OpenAI, Anthropic, and Google.

Rather than betting everything on building the single most capable model, Zoom is positioning itself as an orchestration layer — a company that can integrate the best capabilities from multiple providers and deliver them through products that businesses already use every day.

This strategy hedges against a critical uncertainty in the AI market: no one knows which model will be best next month, let alone next year. By building infrastructure that can swap between providers, Zoom avoids vendor lock-in while theoretically offering customers the best available AI for any given task.

The announcement of OpenAI's GPT-5.2 the following day underscored this dynamic. OpenAI's own communications named Zoom as a partner that had evaluated the new model's performance "across their AI workloads and saw measurable gains across the board." Zoom, in other words, is both a customer of the frontier labs and now a competitor on their benchmarks — using their own technology.

This arrangement may prove sustainable. The major model providers have every incentive to sell API access widely, even to companies that might aggregate their outputs. The more interesting question is whether Zoom's orchestration capabilities constitute genuine intellectual property or merely sophisticated prompt engineering that others could replicate.

The real test arrives when Zoom's 300 million users start asking questions

Zoom titled its announcement section on industry relations "A Collaborative Future," and Huang struck notes of gratitude throughout. "The future of AI is collaborative, not competitive," he wrote. "By combining the best innovations from across the industry with our own research breakthroughs, we create solutions that are greater than the sum of their parts."

This framing positions Zoom as a beneficent integrator, bringing together the industry's best work for the benefit of enterprise customers. Critics see something else: a company claiming the prestige of an AI laboratory without doing the foundational research that earns it.

The debate will likely be settled not by leaderboards but by products. When AI Companion 3.0 reaches Zoom's hundreds of millions of users in the coming months, they will render their own verdict — not on benchmarks they have never heard of, but on whether the meeting summary actually captured what mattered, whether the action items made sense, whether the AI saved them time or wasted it.

In the end, Zoom's most provocative claim may not be that it topped a benchmark. It may be the implicit argument that in the age of AI, the best model is not the one you build — it's the one you know how to use.

Ria.city






Read also

Trump vs. BBC: what’s at stake?

Report: Tottenham want six-time La Liga winner to replace inconsistent starter

Bay Area rock legend wants you to buy his 1989 Toyota Celica Convertible

News, articles, comments, with a minute-by-minute update, now on Today24.pro

Today24.pro — latest news 24/7. You can add your news instantly now — here




Sports today


Новости тенниса


Спорт в России и мире


All sports news today





Sports in Russia today


Новости России


Russian.city



Губернаторы России









Путин в России и мире







Персональные новости
Russian.city





Friends of Today24

Музыкальные новости

Персональные новости