Add news
News Every Day |

When AI builds AI: The next great inventors might not be human

DeepSeek’s blockbuster release of its R1 reasoning model on Jan. 20 unleashed a firestorm of discussion about the U.S./China technological rivalry and the wisdom of AI infrastructure spending, resulting in a sharp dip in the stock prices of many leading AI companies. But buried within all this controversy lies perhaps the least-discussed and most consequential trend in the journey toward artificial general intelligence: the increasing role of AI systems in designing, building, and refining their next-generation successors. Increasingly, AI is building AI.

In the paper accompanying the launch of R1, DeepSeek explained how it took advantage of techniques such as synthetic data generation, distillation, and machine-driven reinforcement learning to produce a model that exceeded the current state-of-the-art. Each of these approaches can be explained another way as harnessing the capabilities of an existing AI model to assist in the training of a more advanced version.

DeepSeek is far from alone in using these AI techniques to advance AI. Mark Zuckerberg predicts that the mid-level engineers at Meta may soon be replaced by AI counterparts, and that Llama 3 (his company’s LLM) "helps us experiment and iterate faster, building capabilities we want to refine and expand in Llama 4.” Nvidia CEO Jensen Huang has spoken at length about creating virtual environments in which AI systems supervise the training of robotic systems: “We can create multiple different multiverses, allowing robots to learn in parallel, possibly learning in 100,000 different ways at the same time.”

This isn’t quite yet the singularity, when intelligent machines autonomously self-replicate, but it is something new and potentially profound. Even amidst such dizzying progress in AI models, though, it’s not uncommon to hear some observers talk about the potential slowing of what’s called the “scaling laws”—the observed principles that AI models increase in performance in direct relationship to the quantity of data, power, and compute applied to them. The release from DeepSeek, and several subsequent announcements from other companies, suggests that arguments of the scaling laws’ demise may be greatly exaggerated. In fact, innovations in AI development are leading to entirely new vectors for scaling—all enabled by AI itself. Progress isn’t slowing down, it’s speeding up—thanks to AI.

Perhaps the oldest method of using AI to create AI is through synthetic data, or using data created by AI systems to further train and refine other AI systems. The term “synthetic data” implies that the generated versions of data are somehow inferior to “organic” data (i.e. the contents of the internet). In practice the opposite is proving true. Synthetic data generation allows AI systems to create realistic training examples tailored to specific domains or edge cases that might be underrepresented in real-world datasets. It’s reasonable to be skeptical of synthetic data as a limitless scaling vector—one recent paper observed that after a few rounds of synthetic data creation the models degraded quickly. Even with limitations, this capability can accelerate innovation in areas where acquiring real data might be impractical such as medical imaging or modeling protein-folding to discover new drugs.

Another key technique that DeepSeek’s release highlighted was the distillation of models, where large, computationally expensive models transfer their knowledge and capabilities to smaller, more efficient models. This process allows for the proliferation of capabilities in open-source and open-weight models, and it helps companies to make those model capabilities available to more users in the form of smaller versions of high-performing models. Distillation makes AI models more scalable by reducing their size, which will make AI models more accessible and applicable to more use-cases.

Imagine if every student began university with the accumulated knowledge of every student and professor who had gone before them. Now imagine that same student being invited to compete with hundreds of other virtual students, all with the same knowledge, with the goal of optimizing for a specific objective. This is the idea of machine-driven reinforcement learning, a technique where AI improves itself through self-play, experimentation, and refining its own thinking. This method of learning has been instrumental in some of the most famous AI breakthroughs of our time, including AlphaGo’s triumph over human players of the ancient game of Go. By leveraging AI systems to create their own training curricula, we open an entirely new vector for scale, limited only by the capacity of ever-more intelligent machines to discover new things.

One of the most remarkable applications of AI being used to refine AI is Google Gemini’s “co-scientist” model, a virtual “scientific collaborator” multi-agent AI system that is designed to replicate the process for the scientific method—but at superhuman scale and speed. Google’s AI co-scientist leverages what’s called test-time compute scaling (additional computation during the inference step) to simulate scientific reasoning, test various hypotheses, and critique its own review process over time. This additional time for computation allows for this AI model to employ a number of these techniques to use synthetic data, reinforcement learning, and agentic coordination of multiple domain-specific models to produce scientific results. It’s akin to having an army of the best-educated scientists in the world who ceaselessly compete to discover new things—an army that never tired, never complained, and constantly improved. This type of approach is not an example of AI building AI, but it shows how these new vectors for scaling have the potential to transform innovation in other sectors.

Now imagine an army of computer scientists with the goal of optimizing the development and speed of LLMs. That’s what Tokyo-based Sakana AI recently announced—an AI CUDA engineer, a fully automated multi-agent framework for the optimization of CUDA kernels, the coding functions that run on Nvidia GPUs. In other words, this is an AI system that rapidly speeds up other AI systems—10-100x faster than previous methods. AI is building AI at an ever-faster rate.

We must accept our inability to perfectly predict how these AI systems will develop and what innovation they might unlock. Most innovations are born out of trial and error over time—often many years or decades. These AI systems replicate the “trial and error process” through ceaseless experimentation at an astounding scale. We scarcely have a conception of what capabilities, even creativity, might emerge from AI systems as they tackle computation and reasoning at ever higher levels, which could soon surpass the ability of any human to even imagine.

Observers of technological progress are in for a wild ride these next few years. Even the very notion of the “innovator” will change as more breakthroughs come not from a single individual’s achievement or discovery, but from AI systems endlessly iterating. For the past several decades, humans have contributed to the field of computer science and artificial intelligence with the hope of creating AI systems that can replicate the best of human knowledge and reason. But recent developments in the field of AI suggest that we may be approaching a moment when the AI systems we have created progressively bootstrap themselves to build their successors. The next great inventors—those who discover the next critical medical treatment, create new materials, unlock the mysteries of the cosmos or the atom—may not be human at all.

The opinions expressed in Fortune.com commentary pieces are solely the views of their authors and do not necessarily reflect the opinions and beliefs of Fortune.

This story was originally featured on Fortune.com

Реклама
The most beautiful beach towns with cheap living

A huge number of people around the world dream of one day breaking out of the daily routine

Exclusive: Chainguard secures $356 million Series D as valuation soars to $3.5 billion

World Champion’s Team Reveal ‘The Truth’ Of Conor Benn Sparring After Being Branded A Quitter

Texas immigration lawyer, a U.S. citizen, in DHS mixup gets email telling him to leave immediately or risk deportation: ‘I just thought it was absurd’

Pub landlady gets lifelong restraining order against man in row over smoking

Ria.city
Реклама
  • ИП Попов А.П.
  • ИНН: 602715631406
Осторожно, 1 стакан сжигает 3 кг жира! Запишите рецепт...

Вот это точно убьет лишний вес! -17кг за 5 дней! Перед сном съешьте...






Реклама
  • ИП Попов А.П.
  • ИНН: 602715631406
Ревматолог: "25 апреля 2024 в г.Вашингтон запущена квота"

Каждый человек с больными суставами имеет право получить...


Реклама
  • ИП Попов А.П.
  • ИНН: 602715631406
Ревматолог: "25 апреля 2024 в г.Вашингтон запущена квота"

Каждый человек с больными суставами имеет право получить...

Read also

Best electric grill

‘As the bow touched down the noise was different… In two seconds my race was over’ – Pip Hare’s Vendée disaster

Should Vettel replace Marko as Red Bull's young driver boss?

News, articles, comments, with a minute-by-minute update, now on Today24.pro

News Every Day

Pub landlady gets lifelong restraining order against man in row over smoking

Today24.pro — latest news 24/7. You can add your news instantly now — here


News Every Day

Exclusive: Chainguard secures $356 million Series D as valuation soars to $3.5 billion



Sports today


Новости тенниса
ATP

Мадрид (ATP). 2-й круг. Медведев сыграет с Дьере, Рублев – с Монфисом, Зверев поборется с Баутистой-Агутом, Фриц – с О’Коннеллом, Рууд – с Навоне



Спорт в России и мире
Москва

Вячеслав Федорищев принял участие в заседании Оргкомитета по подготовке форума «Россия - спортивная держава»



All sports news today





Sports in Russia today

Москва

Москва приняла XVI юношеский турнир по армрестлингу, посвященный памяти Героя России Сергея Громова


Новости России

Game News

Гайд по персонажу Zero из Black Beacon


Реклама
The most beautiful beach towns with cheap living

A huge number of people around the world dream of one day breaking out of the daily routine

Реклама
The most beautiful beach towns with cheap living

A huge number of people around the world dream of one day breaking out of the daily routine

Реклама
The most beautiful beach towns with cheap living

A huge number of people around the world dream of one day breaking out of the daily routine

Russian.city

Реклама
Top 6 nutrition questions men should ask themselves after 40

To maintain health and remain full of energy, men will be helped by this


Блоги

Страна споет «Катюшу» с «Авторадио»


Губернаторы России
Елена Волкова

В Республике Таджикистан стартует проект «Русский язык: читаем, слушаем, смотрим»


Юные армрестлеры Москвы и Подмлсковья состязались за Кубок Героя России Сергея Громова в Москве

ПОЧЕМУ АГЕНТЫ РОССИИ ЗАПОЛОНИЛИ США И ЕВРОПУ! НО НУЖНО ПРАВИЛЬНО ИХ НАПРАВИТЬ. СЕНСАЦИЯ! Новости! В.В. Путин, Дональд Трамп. Россия, США, Европа могут улучшить отношения и здоровье общества?!

Алсу и Ян Абрамов заключили мировое соглашение в суде

Сеть клиник «Будь Здоров» отметила 20-летний юбилей


На «Барсе» жизни нет // Московское «Динамо» прошло «Ак Барс» в четвертьфинале play-off

«Дзюба шутил насчет моих усов, а в «Ростове» сравнивают с Меркьюри»

Концерт хореографического коллектива пройдет на Саянской улице

«Жизнь прекрасна»: Концерт в честь Дня Победы в Московском театре мюзикла!


Джокович: Если бы я не был мотивирован, я бы больше не играл

Рыбакина впервые за 116 недель покинула топ-10 мирового рейтинга

Блинкова победила Удварди и вышла во второй круг турнира категории WTA в Мадриде

Блинкова стартовала с победы на турнире WTA 1000 в Мадриде и сыграет с Соболенко во втором круге


Реклама
The most beautiful beach towns with cheap living

A huge number of people around the world dream of one day breaking out of the daily routine


В Грозном наградили победителей благотворительного детского фестиваля «Добрая волна»

В России выявили завозной случай холеры

Роспотребнадзор: Зафиксированы случаи укусов клещей в пяти московских парках

Сеть клиник «Будь Здоров» отметила 20-летний юбилей


Огонь Победы отправился с Поклонной горы в 12 городов России

В столице состоялось открытое соревнование по армрестлингу, посвящённое памяти Героя России Сергея Громова. Участники турнира сразились за почётный Кубок.

Выставка Build Ural 2025 продолжает свою работу в Екатеринбурге

В Республике Таджикистан стартует проект «Русский язык: читаем, слушаем, смотрим»


Томская область может лишиться одного представителя в Госдуме

Зеленый чай против стресса: токсиколог Кутушов рассказал, как снизить кортизол с пользой для здоровья

К «Диктанту Победы» присоединились сотрудники забайкальского Росреестра

Эксперты посчитали, за сколько лет окупится коттедж в Ульяновской области


Реклама
Top 6 nutrition questions men should ask themselves after 40

To maintain health and remain full of energy, men will be helped by this


Путин в России и мире
Реклама
Top 6 nutrition questions men should ask themselves after 40

To maintain health and remain full of energy, men will be helped by this





Реклама
Top 6 nutrition questions men should ask themselves after 40

To maintain health and remain full of energy, men will be helped by this



Реклама
The most beautiful beach towns with cheap living

A huge number of people around the world dream of one day breaking out of the daily routine

Персональные новости Russian.city
Елена Волкова

Ксения Алферова, Зоя Бербер, Валерия Ланская, Оскар Кучера и другие звезды на премьере анимационного фильма «Ай да Пушкин!»



News Every Day

Texas immigration lawyer, a U.S. citizen, in DHS mixup gets email telling him to leave immediately or risk deportation: ‘I just thought it was absurd’




Friends of Today24

Музыкальные новости

Персональные новости