March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024 December 2024 January 2025
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
News Every Day |

Training robots in the AI-powered industrial metaverse

Imagine the bustling floors of tomorrow’s manufacturing plant: Robots, well-versed in multiple disciplines through adaptive AI education, work seamlessly and safely alongside human counterparts. These robots can transition effortlessly between tasks—from assembling intricate electronic components to handling complex machinery assembly. Each robot’s unique education enables it to predict maintenance needs, optimize energy consumption, and innovate processes on the fly, dictated by real-time data analyses and learned experiences in their digital worlds.

Training for robots like this will happen in a “virtual school,” a meticulously simulated environment within the industrial metaverse. Here, robots learn complex skills on accelerated timeframes, acquiring in hours what might take humans months or even years.

Beyond traditional programming

Training for industrial robots was once like a traditional school: rigid, predictable, and limited to practicing the same tasks over and over. But now we’re at the threshold of the next era. Robots can learn in “virtual classrooms”—immersive environments in the industrial metaverse that use simulation, digital twins, and AI to mimic real-world conditions in detail. This digital world can provide an almost limitless training ground that mirrors real factories, warehouses, and production lines, allowing robots to practice tasks, encounter challenges, and develop problem-solving skills. 

What once took days or even weeks of real-world programming, with engineers painstakingly adjusting commands to get the robot to perform one simple task, can now be learned in hours in virtual spaces. This approach, known as simulation to reality (Sim2Real), blends virtual training with real-world application, bridging the gap between simulated learning and actual performance.

Although the industrial metaverse is still in its early stages, its potential to reshape robotic training is clear, and these new ways of upskilling robots can enable unprecedented flexibility.

Italian automation provider EPF found that AI shifted the company’s entire approach to developing robots. “We changed our development strategy from designing entire solutions from scratch to developing modular, flexible components that could be combined to create complete solutions, allowing for greater coherence and adaptability across different sectors,” says EPF’s chairman and CEO Franco Filippi.

Learning by doing

AI models gain power when trained on vast amounts of data, such as large sets of labeled examples, learning categories, or classes by trial and error. In robotics, however, this approach would require hundreds of hours of robot time and human oversight to train a single task. Even the simplest of instructions, like “grab a bottle,” for example, could result in many varied outcomes depending on the bottle’s shape, color, and environment. Training then becomes a monotonous loop that yields little significant progress for the time invested.

Building AI models that can generalize and then successfully complete a task regardless of the environment is key for advancing robotics. Researchers from New York University, Meta, and Hello Robot have introduced robot utility models that achieve a 90% success rate in performing basic tasks across unfamiliar environments without additional training. Large language models are used in combination with computer vision to provide continuous feedback to the robot on whether it has successfully completed the task. This feedback loop accelerates the learning process by combining multiple AI techniques—and avoids repetitive training cycles.

Robotics companies are now implementing advanced perception systems capable of training and generalizing across tasks and domains. For example, EPF worked with Siemens to integrate visual AI and object recognition into its robotics to create solutions that can adapt to varying product geometries and environmental conditions without mechanical reconfiguration.

Learning by imagining

Scarcity of training data is a constraint for AI, especially in robotics. However, innovations that use digital twins and synthetic data to train robots have significantly advanced on previously costly approaches.

For example, Siemens’ SIMATIC Robot Pick AI expands on this vision of adaptability, transforming standard industrial robots—once limited to rigid, repetitive tasks—into complex machines. Trained on synthetic data—virtual simulations of shapes, materials, and environments—the AI prepares robots to handle unpredictable tasks, like picking unknown items from chaotic bins, with over 98% accuracy. When mistakes happen, the system learns, improving through real-world feedback. Crucially, this isn’t just a one-robot fix. Software updates scale across entire fleets, upgrading robots to work more flexibly and meet the rising demand for adaptive production.

Another example is the robotics firm ANYbotics, which generates 3D models of industrial environments that function as digital twins of real environments. Operational data, such as temperature, pressure, and flow rates, are integrated to create virtual replicas of physical facilities where robots can train. An energy plant, for example, can use its site plans to generate simulations of inspection tasks it needs robots to perform in its facilities. This speeds the robots’ training and deployment, allowing them to perform successfully with minimal on-site setup.

Simulation also allows for the near-costless multiplication of robots for training. “In simulation, we can create thousands of virtual robots to practice tasks and optimize their behavior. This allows us to accelerate training time and share knowledge between robots,” says Péter Fankhauser, CEO and co-founder of ANYbotics.

Because robots need to understand their environment regardless of orientation or lighting, ANYbotics and partner Digica created a method of generating thousands of synthetic images for robot training. By removing the painstaking work of collecting huge numbers of real images from the shop floor, the time needed to teach robots what they need to know is drastically reduced.

Similarly, Siemens leverages synthetic data to generate simulated environments to train and validate AI models digitally before deployment into physical products. “By using synthetic data, we create variations in object orientation, lighting, and other factors to ensure the AI adapts well across different conditions,” says Vincenzo De Paola, project lead at Siemens. “We simulate everything from how the pieces are oriented to lighting conditions and shadows. This allows the model to train under diverse scenarios, improving its ability to adapt and respond accurately in the real world.”

Digital twins and synthetic data have proven powerful antidotes to data scarcity and costly robot training. Robots that train in artificial environments can be prepared quickly and inexpensively for wide varieties of visual possibilities and scenarios they may encounter in the real world. “We validate our models in this simulated environment before deploying them physically,” says De Paola. “This approach allows us to identify any potential issues early and refine the model with minimal cost and time.”

This technology’s impact can extend beyond initial robot training. If the robot’s real-world performance data is used to update its digital twin and analyze potential optimizations, it can create a dynamic cycle of improvement to systematically enhance the robot’s learning, capabilities, and performance over time.

The well-educated robot at work

With AI and simulation powering a new era in robot training, organizations will reap the benefits. Digital twins allow companies to deploy advanced robotics with dramatically reduced setup times, and the enhanced adaptability of AI-powered vision systems makes it easier for companies to alter product lines in response to changing market demands.

The new ways of schooling robots are transforming investment in the field by also reducing risk. “It’s a game-changer,” says De Paola. “Our clients can now offer AI-powered robotics solutions as services, backed by data and validated models. This gives them confidence when presenting their solutions to customers, knowing that the AI has been tested extensively in simulated environments before going live.”

Filippi envisions this flexibility enabling today’s robots to make tomorrow’s products. “The need in one or two years’ time will be for processing new products that are not known today. With digital twins and this new data environment, it is possible to design today a machine for products that are not known yet,” says Filippi.

Fankhauser takes this idea a step further. “I expect our robots to become so intelligent that they can independently generate their own missions based on the knowledge accumulated from digital twins,” he says. “Today, a human still guides the robot initially, but in the future, they’ll have the autonomy to identify tasks themselves.”

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

Москва

Собянин назвал число спасенных жизней во флагманских центрах Москвы

Pete Buttigieg has a few things to say on his way out

Nvidia flatters Trump in scathing response to Biden’s new AI chip restrictions

TV show Chhathi Maiyya Ki Bitiya’s Brinda Dahal Shares an Inspiring Message on National Youth Day

I’ve bartered my way to a better life – I’ve traded vegetables for a better car & eggs for haircuts, now I’m debt-free

Ria.city






Read also

Tiger Woods’ TGL debut starts with electric entrance, most predictable entrance song ever

Fury as ex-Sinn Fein leader Gerry Adams in line for PAYOUT for being held during The Troubles under new Labour law

Is TikTok’s time nearly up?

News, articles, comments, with a minute-by-minute update, now on Today24.pro

News Every Day

I’ve bartered my way to a better life – I’ve traded vegetables for a better car & eggs for haircuts, now I’m debt-free

Today24.pro — latest news 24/7. You can add your news instantly now — here


News Every Day

TV show Chhathi Maiyya Ki Bitiya’s Brinda Dahal Shares an Inspiring Message on National Youth Day



Sports today


Новости тенниса
Уимблдон

Рублёв признался, что пережил депрессию после поражения на Уимблдоне-2024



Спорт в России и мире
Москва

Сергей Собянин: Наши школьники завоевали для сборной больше половины наград



All sports news today





Sports in Russia today

Москва

Автокросс в Химках: зиму не отменить!


Новости России

Game News

Blasting AI into the past: modders get Llama AI working on an old Windows 98 PC


Russian.city


Українські новини

Печерський суд ухвалив рішення про тримання Ігоря Зотька під вартою, попри готовність Героїв України взяти його на поруки


Губернаторы России
Дмитрий Певцов

Фото Певцова сняли со стены в «Ленкоме Марка Захарова»


В Московском регионе 5,6 тысячи самозанятых самостоятельно формируют будущую пенсию

Юрист Георгиева: в феврале и марте 2025 года не будет длинных выходных

Врач Арзамасцев: фастфуд может вызвать депрессию

В 2024 году Отделение СФР по Москве и Московской области назначило единое пособие родителям 370,5 тысячи детей


Баста, Агутин и "Ленинград" вошли в топ главных звезд корпоративного сезона

Певица Акула тайно вышла замуж за композитора Бабаева

AI Певица. Создание AI Певицы. AI Певец. AI Артист.

Тимати проводит время с Валентиной Ивановой и детьми в Диснейленде: фото


Елена Рыбакина раскрыла подробности о проблемах со здоровьем в прошлом году

Касаткина победила Томову и прошла во второй круг Открытого чемпионата Австралии

Анна Калинская раскрыла причину снятия с Australian Open — 2025

Калинская: Я очень ждала Australian Open, но подхватила какой-то вирус



В Московском регионе 5,6 тысячи самозанятых самостоятельно формируют будущую пенсию

В Московском регионе 5,6 тысячи самозанятых самостоятельно формируют будущую пенсию

В Московском регионе 5,6 тысячи самозанятых самостоятельно формируют будущую пенсию

В 2024 году Отделение СФР по Москве и Московской области назначило единое пособие родителям 370,5 тысячи детей


Немец в люке, ругающийся поляк-электрик и таксист из Великобритании на улицах Симферополя

На V выставке «Уникальная Россия» отметят юбилеи Матрешки, Жостово и Федоскино

Продолжаются поиски пропавшего псковича в куртке Nike и черных кроссовках

LG РАСПРОСТРАНИТ СВОЁ ВИДЕНИЕ «РЕШЕНИЙ УМНОГО ДОМА» НА МОБИЛЬНЫЕ ПРОСТРАНСТВА НА ВЫСТАВКЕ CES 2025


Юрист Георгиева: в феврале и марте 2025 года не будет длинных выходных

Тихая оккупация России переходит в новую фазу: Против русских начинают этноцид

Внеплановые каникулы заставили школьников улыбнуться: утверждены новые весенние даты

День образования Следственного комитета отмечают сегодня



Путин в России и мире






Персональные новости Russian.city
Клава Кока

«Мужики, я уже не хочу за вас платить!»: Клава Кока рассказала о «ред флагах» для новых отношений в «Шоу Воли» на ТНТ



News Every Day

I’ve bartered my way to a better life – I’ve traded vegetables for a better car & eggs for haircuts, now I’m debt-free




Friends of Today24

Музыкальные новости

Персональные новости