March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010
November 2010
December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28
29
30
News Every Day |

Mandelbrot’s fractals are gorgeous and taught mathematicians how to model the real world

At the beginning of my third year at university studying mathematics, I spotted an announcement. A visiting professor from Canada would be giving a mini-course of ten lectures on a subject called complex dynamics.

It happened to be a difficult time for me. On paper, I was a very good student with an average of over 90%, but in reality I was feeling very uncertain. It was time for us to choose a branch of mathematics in which to specialize, but I hadn’t connected to any of the subjects so far; they all felt too technical and dry.

So I decided to take a chance on the mini-course. As soon as it started, I was captured by the startling beauty of the patterns that emerged from the mathematics. These were a relatively recent discovery, we learned; nothing like them had existed before the 1980s.

Benoit Mandelbrot (1924-2010). Wikimedia, CC BY-SA

They were thanks to the maverick French-American mathematician Benoit Mandelbrot, who came up with them in an attempt to visualise this field – with help from some powerful computers at the IBM TJ Watson Research Center in upstate New York.

A fractal – the term he derived from the Latin word fractus, meaning “broken” or “fragmented” – is a geometric shape that can be divided into smaller parts which are each a scaled copy of the whole. They are a visual representation of the fact that even a process with the simplest mathematical model can demonstrate complex and intricate behaviour at all scales.

How the fractals are created

The system used by Mandelbrot was as follows: you choose a number (z), square it and then add another number (c). Then repeat over and over, keeping c the same while using the sum total from the previous calculation as z each time.

Starting, for example, with z=0 and c=1, the first calculation would be 0² + 1 = 1. By making z=1 for the next calculation, it’s 1² + 1 = 2, and so on.

To get a sense of what comes next, you can plot the value of c on a line and color code it depending on how many iterations in the series it takes for the sum total to exceed 4 (the reason it’s 4 is because anything larger will quickly grow towards an infinitely large number in subsequent iterations). For example, you might use blue if the series never exceeds 4, red if it gets there after 1-5 iterations, black if it takes 6-9 iterations, and so on.

The Mandelbrot set is actually more complicated because you don’t plot c on a line but on a plane with x and y axes. This involves introducing several more mathematical concepts where c is a complex number and the y axis refers to imaginary values. If you want more on these, watch the video below. By plotting lots of different values of c on the plane, you derive the fractals.

This idea of visualisation from Mandelbrot, who would have turned 100 this month, led mathematicians to accept the role of pictures in experimental mathematics. It has also led to a huge amount of research. On five out of eight occasions since 1994, the Fields medal – among the highest accolades in mathematics – has been awarded for work related to his conjectures.

Mandelbrot in the real world

For centuries, mathematicians had to live with the uncomfortable thought that their existing tools – known as Euclidean geometry – were not really suitable for modelling and understanding the real world. They all produced smooth curves, but nature is not like that.

For example, one can sketch the shape of the British coastline with a few continuous strokes. But once you zoom in, you can see lots of small irregularities that were previously invisible. The same holds true for the beds of the rivers, mountains and the branches of trees, among many others.

When mathematicians tried to model the surface of anything, these small imperfections were always in the way. To make their work fit reality, they had to introduce additional elements which superimposed “noise” on top. But these were ugly and absurd, compensating for their inadequacies by creating an illusion.

Mandelbrot’s revolutionary philosophy, presented in his 1982 manifesto, The Fractal Geometry of Nature, argued that scientific methods could be adapted to study vast classes of irregular phenomena like these. He was the first to realise that, scattered around the research literature, often in obscure sources, were the germs of a coherent framework that would allow mathematical models to go beyond the comfort of Euclidean geometry, and tackle the irregularities without relying on a superimposed mechanism.

Tree branches are one of any number of natural phenomena that mathematicians struggled to model. Mariia Romanyk

This made his theory applicable to a wide range of improbably diverse fields. For example, it is used to model cloud formation in meteorology, and price fluctuations in the stock market. Other fields in which it has application include statistical physics, cosmology, geophysics, computer graphics and physiology.

Mandelbrot’s life story was just as jagged as his discovery. He was born to a Jewish-Lithuanian family in Warsaw in 1924. Sensing the approaching trouble, the family first moved to Paris in 1936, then to a small town in the south of France.

In 1945 he was admitted to the most prestigious university in France, the École Normale Supérieure in Paris, but stayed only for a day. He dropped out to move to the less prestigious École Polytechnique, which suited him better.

Following an MSc in aerodynamics at California Institute of Technology and a PhD in mathematics at the University of Paris, Mandelbrot spent most of his active scientific life in an IBM industrial laboratory. Only in 1987 was he appointed Abraham Robinson Adjunct Professor of Mathematical Sciences at Yale, where he stayed until his death in 2010.

It is no exaggeration to say that Mandelbrot is one of the greatest masterminds of our era. Thanks to his work, visual images of fractals have become symbolic for mathematical research as a whole. The community recognized his contribution by naming one of the most famous fractals the Mandelbrot set.

In the epilogue of a 1995 documentary about his discovery, The Colours of Infinity, we see Benoit addressing the camera:

I’ve spent most of my life unpacking the ideas that became fractal geometry. This has been exciting and enjoyable, most times. But it also has been lonely. For years few shared my views. Yet the ghost of the idea of fractals continued to beguile me, so I kept looking through the long, dry years.
So find the thing you love. It doesn’t so much matter what it is. Find the thing you love and throw yourself into it. I found a new geometry; you’ll find something else. Whatever you find will be yours.

Polina Vytnova, Lecturer in Mathematics, University of Surrey

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Симферополь

Россияне активно воруют масло из магазинов по всей стране

Sky Sports commentator stunned by ‘one of the strangest reactions to a goal I’ve ever seen’ by Watford fans

F1 Las Vegas Grand Prix – Start time, starting grid, how to watch, & more

Las Vegas GP F1 qualifying: George Russell takes pole, Lewis Hamilton only 10th

Exclusive: Sumit Kaul on joining the new season of Tenali Rama as Girgit; says ‘It will be a challenge for me to live up to the expectations of audience’

Ria.city






Read also

Jets vs. Kings November 27: Injured players, inactives, latest updates

Gameday: Raptors @ Pelicans, November 27

World Darts Championship 2024/25: FULL schedule, results, live stream, TV as Luke Littler battles for Ally Pally title

News, articles, comments, with a minute-by-minute update, now on Today24.pro

News Every Day

Sky Sports commentator stunned by ‘one of the strangest reactions to a goal I’ve ever seen’ by Watford fans

Today24.pro — latest news 24/7. You can add your news instantly now — here


News Every Day

Sky Sports commentator stunned by ‘one of the strangest reactions to a goal I’ve ever seen’ by Watford fans



Sports today


Новости тенниса
ATP

Андреа Петкович заявила, что Синнера не включили в номинанты премии ATP из-за допинг-дела



Спорт в России и мире
Москва

Победа с минимальным отрывом: АРХИWOOD выиграл во II туре Лиги Чемпионов Бизнеса



All sports news today





Sports in Russia today

Москва

Певец из Москвы Лев Соловьев выпустил гимн медиафутбола и футбольной медиалиги


Новости России

Game News

Rejoice, roguelike nerds: Shiren the Wanderer: The Mystery Dungeon of Serpentcoil Island is coming to Steam


Russian.city


Даниил Медведев

Во французском городе Грас открыли корт имени Даниила Медведева


Губернаторы России
Сергей Лазарев

Сергей Лазарев не смог вовремя вылететь из Иркутска из-за снегопада


Филиал № 4 ОСФР по Москве и Московской области информирует: Отделение СФР по Москве и Московской области оплатило свыше 243 тысяч дополнительных выходных дней по уходу за детьми с инвалидностью

Владикавказ признан самым безопасным городом России

Лукашенко восхитился талантом российской актрисы Польских

Bloody - участник и технический партнер Red Expo-2024


Музыка Мусоргского, Чайковского и Рахманинова прозвучит в Пскове

Депутат Милонов призвал Минкультуры навести порядок с ценами на билеты в Большой театр

На заводах Желдорреммаш обновляется парк самоходной техники

Мелодия материнской любви прозвучала в «Геликон-Опере»


Теннисисты из Италии второй раз подряд выиграли Кубок Дэвиса

Кубок Дэвиса. Финал. Берреттини играет с ван де Зандшульпом, Синнер встретится с Грикспором

Во французском городе Грас открыли корт имени Даниила Медведева

Миранчук с «Атлантой» выбыл из плей-офф МЛС, Синнер выиграл Кубок Дэвиса. Главное к утру



В Подмосковье офицер Росгвардии оказал помощь в эвакуации  пострадавших в результате ДТП

Сеть клиник «Будь Здоров» запустила медицинского GPT-ассистента

«МедАльянсГрупп» – надежный партнер в медицинской сфере

Сеть клиник «Будь Здоров» запустила медицинского GPT-ассистента


Нижегородское "Торпедо" разгромило на выезде московский "Спартак" в КХЛ

Более 700 энергетиков продолжают устранять последствия непогоды в Смоленской области

Более 700 энергетиков продолжают устранять последствия непогоды в Смоленской области

Концертный Директор для Певцов, Музыкантов и Артистов.


Путин назвал отношения России и Казахстана динамичными

Владимир Ефимов: Инвестор и операторы КРТ реорганизуют участки в шести районах столицы

Экс-адвокат Пашаев на очной ставке с Блиновским не получил ответа о происхождении денег

Лукашенко восхитился талантом российской актрисы Польских



Путин в России и мире






Персональные новости Russian.city
Сергей Брановицкий

Релиз трека. Релиз новой песни. Релиз сингла. Релиз Музыкального альбома.



News Every Day

F1 Las Vegas Grand Prix – Start time, starting grid, how to watch, & more




Friends of Today24

Музыкальные новости

Персональные новости