March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010
November 2010
December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024
1 2 3 4 5 6 7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
News Every Day |

How close are we to an accurate AI fake news detector?

Monster Ztudio/Shutterstock

In the ambitious pursuit to tackle the harms from false content on social media and news websites, data scientists are getting creative.

While still in their training wheels, the large language models (LLMs) used to create chatbots like ChatGPT are being recruited to spot fake news. With better detection, AI fake news checking systems may be able to warn of, and ultimately counteract, serious harms from deepfakes, propaganda, conspiracy theories and misinformation.

The next level AI tools will personalise detection of false content as well as protecting us against it. For this ultimate leap into user-centered AI, data science needs to look to behavioural and neuroscience.

Recent work suggests we might not always consciously know that we are encountering fake news. Neuroscience is helping to discover what is going on unconsciously. Biomarkers such as heart rate, eye movements and brain activity) appear to subtly change in response to fake and real content. In other words, these biomarkers may be “tells” that indicate if we have been taken in or not.

For instance, when humans look at faces, eye-tracking data shows that we scan for rates of blinking and changes in skin colour caused by blood flow. If such elements seem unnatural, it can help us decide that we’re looking at a deepfake. This knowledge can give AI an edge – we can train it to mimic what humans look for, among other things.

The personalisation of an AI fake news checker takes shape by using findings from human eye movement data and electrical brain activity that shows what types of false content has the greatest impact neurally, psychologically and emotionally, and for whom.

Knowing our specific interests, personality and emotional reactions, an AI fact-checking system could detect and anticipate which content would trigger the most severe reaction in us. This could help establish when people are taken in and what sort of material fools people the easiest.

Counteracting harms

What comes next is customising the safeguards. Protecting us from the harms of fake news also requires building systems that could intervene – some sort of digital countermeasure to fake news. There are several ways to do this such as warning labels, links to expert-validated credible content and even asking people to try to consider different perspectives when they read something.

Our own personalised AI fake news checker could be designed to give each of us one of these countermeasures to cancel out the harms from false content online.

Such technology is already being trialled. Researchers in the US have studied how people interact with a personalised AI fake news checker of social media posts. It learned to reduce the number of posts in a news feed to those it deemed true. As a proof of concept, another study using social media posts tailored additional news content to each media post to encourage users to view alternative perspectives.

Accurate detection of fake news

But whether this all sounds impressive or dystopian, before we get carried away it might be worth asking some basic questions.

Much, if not all, of the work on fake news, deepfakes, disinformation and misinformation highlights the same problem that any lie detector would face.

There are many types of lie detectors, not just the polygraph test. Some exclusively depend on linguistic analysis. Others are systems designed to read people’s faces to detect if they are leaking micro-emotions that give away that they are lying. By the same token, there are AI systems that are designed to detect if a face is genuine or a deep fake.

Before the detection begins, we all need to agree on what a lie looks like if we are to spot it. In fact, in deception research shows it can be easier because you can instruct people when to lie and when tell the truth. And so you have some way of knowing the ground truth before you train a human or a machine to tell the difference, because they are provided with examples on which to base their judgements.

Knowing how good an expert lie detector is depends on how often they call out a lie when there was one (hit). But also, that they don’t frequently mistake someone as telling the truth when they were in fact lying (miss). This means they need to know what the truth is when they see it (correct rejection) and don’t accuse someone of lying when they were telling the truth (false alarm). What this refers to is signal detection, and the same logic applies to fake news detection which you can see in the diagram below.

For an AI system detecting fake news, to be super accurate, the hits need to be really high (say 90%) and so the misses will be very low (say 10%), and the false alarms need to stay low (say 10%) which means real news isn’t called fake. If an AI fact-checking system, or a human one is recommended to us, based on signal detection, we can better understand how good it is.

There are likely to be cases, as has been reported in a recent survey, where the news content may not be completely false or completely true, but partially accurate. We know this because the speed of news cycles means that what is considered accurate at one time, may later be found to be inaccurate, or vice versa. So, a fake news checking system has its work cut out.

If we knew in advance what was faked and what was real news, how accurate are biomarkers at indicating unconsciously which is which? The answer is not very. Neural activity is most often the same when we come across real and fake news articles.

When it comes to eye-tracking studies, it is worth knowing that there are different types of data collected from eye-tracking techniques (for example the length of time our eye fix on an object, the frequency that our eye moves across a visual scene).

So depending on what is analysed, some studies show that we direct more attention when viewing false content, while others show the opposite.

Are we there yet?

AI fake news detection systems on the market are already using insights from behavioural science to help flag and warn us against fake news content. So it won’t be a stretch for the same AI systems to start appearing in our news feeds with customised protections for our unique user profile. The problem with all this is we still have a lot of basic ground to cover in knowing what is working, but also checking whether we want this.

In the worst case scenario, we only see fake news as a problem online as an excuse to solve it using AI. But false and inaccurate content is everywhere, and gets discussed offline. Not only that, we don’t by default believe all fake news, some times we use it in discussions to illustrate bad ideas.

In an imagined best case scenario, data science and behavioural science is confident about the scale of the various harms fake news might cause. But, even here, AI applications combined with scientific wizardry might still be very poor substitutes for less sophisticated but more effective solutions.

Magda Osman receives funding from Innovate UK, ESRC, British Academy, Research England.

Москва

В Московской области сотрудники Росгвардии провели урок безопасности для школьников

Karachi industrial park to be declared model special economic zone

‘We do not get to sit this one out’: Oprah delivers powerful election eve speech

Karkala MLA slams Karnataka govt for failing to fund plank installations on Udupi dams

UK will urge Trump administration not to curb free trade, Reeves says

Ria.city






Read also

Single family residence in Palo Alto sells for $3.7 million

I-70 closes at Colorado-Kansas border due to winter weather

Cody Garbrandt out of UFC Vegas 100

News, articles, comments, with a minute-by-minute update, now on Today24.pro

News Every Day

Karkala MLA slams Karnataka govt for failing to fund plank installations on Udupi dams

Today24.pro — latest news 24/7. You can add your news instantly now — here


News Every Day

Karkala MLA slams Karnataka govt for failing to fund plank installations on Udupi dams



Sports today


Новости тенниса
Даниил Медведев

Даниил Медведев станет самым возрастным участником Итогового турнира — 2024



Спорт в России и мире
Москва

Енот Шоня из мультсериала «Команда МАТЧ» посетил матч ЦСКА – «Спартак»



All sports news today





Sports in Russia today

Москва

В "Динамо" опубликовали фото Мостового в образе царя


Новости России

Game News

A college student put on a free, stage adaptation of Silent Hill 2 'to make a truly frightening theatrical experience' all without an appearance by Pyramid Head


Russian.city


Москва

Джиган, Artik & Asti и NILETTO спели о худи, а Дина Саева стала новым артистом: в Москве прошел BRUNCH Rocket Group


Губернаторы России
Владимир Путин

Путин в День народного единства посетил памятник Минину и Пожарскому


Филиал № 4 ОСФР по Москве и Московской области информирует: Социальный фонд выплатит остатки материнского капитала менее 10 тысяч рублей

Игрок "Локомотива" Ньямси назвал одноклубника Монтеса игроком высокого уровня

Edlix.ru открывает двери лучшим ВУЗам России для расширения доступа к образованию

Инвестпроекты Арктики составляют пятую часть экономики РФ


Дима Билан попал в снежный ураган по дороге к Эльбрусу: "Мощнейший ветер и снегопад в лицо"

Песня Скриптонита стала причиной убийства томича

Николай Цискаридзе на марафоне Знание.Первые: «Если человек развивается, он живет»

Концерт ансамбля патриотической песни «Трассера» прошел в Благовещенске


Александр Зверев: «Очень сложно стать первым без победы на «Шлеме». У меня был шанс в 2022-м, но это редкость, тогда были особые обстоятельства»

Даниил Медведев станет самым возрастным участником Итогового турнира — 2024

В России обесценили матч Елены Рыбакиной с первой ракеткой мира

Соболенко досрочно пробилась в плей-офф Итогового WTA. А Рыбакина уже не выйдет из группы



Богданов борется за сердце Glukozы, а Хрусталев ищет кольцо Нефертити

Глава ТПП РФ Сергей Катырин: бизнес предлагает донастроить налоговое законодательство

В Подмосковье росгвардейцы помогли автолюбительнице, оказавшейся в сложной ситуации из-за гололеда

В Московской области сотрудники Росгвардии провели урок безопасности для школьников


"Торпедо" - "Динамо Москва" 4 ноября: где смотреть трансляцию матча

Уральская ТПП реализует важные межнациональные проекты и укрепляет народное единство

В Подмосковье росгвардейцы помогли автолюбительнице, оказавшейся в сложной ситуации из-за гололеда

Джиган, Artik & Asti и NILETTO спели о худи, а Дина Саева стала новым артистом: в Москве прошел BRUNCH Rocket Group


Московское «Динамо» добыло победу над «Витязем» в матче КХЛ

Единая лига ВТБ. МБА-МАИ играет с ЦСКА, «Локомотив-Кубань» встречается с «Пармой»

Сергей Собянин: Новая станция ускорит развитие района

Чемпионат по футзалу начался в Солнечногорске



Путин в России и мире






Персональные новости Russian.city
Григорий Лепс

Лепс раскрыл, какое место в его жизни занимает алкоголь



News Every Day

‘We do not get to sit this one out’: Oprah delivers powerful election eve speech




Friends of Today24

Музыкальные новости

Персональные новости