Add news
March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024 December 2024 January 2025 February 2025 March 2025 April 2025 May 2025 June 2025 July 2025 August 2025 September 2025 October 2025 November 2025 December 2025
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
News Every Day |

Colorful Films Could Help Buildings, Cars Keep Their Cool

The cold blast of an air conditioner can be a welcome relief as temperatures soar, but “A/C” units require large amounts of energy and can leak potent greenhouse gases. Today, scientists report an eco-friendly alternative — a plant-based film that gets cooler when exposed to sunlight and comes in a variety of textures and bright, iridescent colors. The material could someday keep buildings, cars and other structures cool without requiring external power.

The researchers will present their results at the spring meeting of the American Chemical Society (ACS). ACS Spring 2023 is a hybrid meeting being held virtually and in-person March 26–30 and features more than 10,000 presentations on a wide range of science topics.

“To make materials that remain cooler than the air around them during the day, you need something that reflects a lot of solar light and doesn’t absorb it, which would transform energy from the light into heat,” says Silvia Vignolini, Ph.D., the project’s principal investigator. “There are only a few materials that have this property, and adding color pigments would typically undo their cooling effects,” Vignolini adds.

Passive daytime radiative cooling (PDRC) is the ability of a surface to emit its own heat into space without it being absorbed by the air or atmosphere. The result is a surface that, without using any electrical power, can become several degrees colder than the air around it. When used on buildings or other structures, materials that promote this effect can help limit the use of air conditioning and other power-intensive cooling methods.

Some paints and films currently in development can achieve PDRC, but most of them are white or have a mirrored finish, says Qingchen Shen, Ph.D., who is presenting the work at the meeting. Both Vignolini and Shen are at Cambridge University (U.K.). But a building owner who wanted to use a blue-colored PDRC paint would be out of luck — colored pigments, by definition, absorb specific wavelengths of sunlight and only reflect the colors we see, causing undesirable warming effects in the process.

But there’s a way to achieve color without the use of pigments. Soap bubbles, for example, show a prism of different colors on their surfaces. These colors result from the way light interacts with differing thicknesses of the bubble’s film, a phenomenon called structural color. Part of Vignolini’s research focuses on identifying the causes behind different types of structural colors in nature. In one case, her group found that cellulose nanocrystals (CNCs), which are derived from the cellulose found in plants, could be made into iridescent, colorful films without any added pigment.

As it turns out, cellulose is also one of the few naturally occurring materials that can promote PDRC. Vignolini learned this after hearing a talk from the first researchers to have created a cooling film material. “I thought wow, this is really amazing, and I never really thought cellulose could do this.”

In recent work, Shen and Vignolini layered colorful CNC materials with a white-colored material made from ethyl cellulose, producing a colorful bi-layered PDRC film. They made films with vibrant blue, green and red colors that, when placed under sunlight, were an average of nearly 40 F cooler than the surrounding air. A square meter of the film generated over 120 Watts of cooling power, rivaling many types of residential air conditioners. The most challenging aspect of this research, Shen says, was finding a way to make the two layers stick together — on their own, the CNC films were brittle, and the ethyl cellulose layer had to be plasma-treated to get good adhesion. The result, however, was films that were robust and could be prepared several meters at a time in a standard manufacturing line.

Since creating these first films, the researchers have been improving their aesthetic appearance. Using a method modified from approaches previously explored by the group, they’re making cellulose-based cooling films that are glittery and colorful. They’ve also adjusted the ethyl cellulose film to have different textures, like the differences between types of wood finishes used in architecture and interior design, says Shen. These changes would give people more options when incorporating PDRC effects in their homes, businesses, cars and other structures.

The researchers now plan to find ways they can make their films even more functional. According to Shen, CNC materials can be used as sensors to detect environmental pollutants or weather changes, which could be useful if combined with the cooling power of their CNC-ethyl cellulose films. For example, a cobalt-colored PDRC on a building façade in a car-dense, urban area could someday keep the building cool and incorporate detectors that would alert officials to higher levels of smog-causing molecules in the air.

Ria.city






Read also

Chris Hemsworth says caring for his dad with Alzheimer's has reshaped his priorities as a father

Man found guilty a 2nd time in retrial for ‘execution style’ double murder in Montgomery Co.

Hong Kong Customs Arrest Afghan National in Attempted Smuggling of 11 Historical Artifacts

News, articles, comments, with a minute-by-minute update, now on Today24.pro

Today24.pro — latest news 24/7. You can add your news instantly now — here




Sports today


Новости тенниса


Спорт в России и мире


All sports news today





Sports in Russia today


Новости России


Russian.city



Губернаторы России









Путин в России и мире







Персональные новости
Russian.city





Friends of Today24

Музыкальные новости

Персональные новости