Add news
March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024 December 2024 January 2025 February 2025 March 2025 April 2025 May 2025 June 2025 July 2025 August 2025 September 2025 October 2025 November 2025
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
News Every Day |

New memory framework builds AI agents that can handle the real world's unpredictability

Researchers at the University of Illinois Urbana-Champaign and Google Cloud AI Research have developed a framework that enables large language model (LLM) agents to organize their experiences into a memory bank, helping them get better at complex tasks over time.

The framework, called ReasoningBank, distills “generalizable reasoning strategies” from an agent’s successful and failed attempts to solve problems. The agent then uses this memory during inference to avoid repeating past mistakes and make better decisions as it faces new problems. The researchers show that when combined with test-time scaling techniques, where an agent makes multiple attempts at a problem, ReasoningBank significantly improves the performance and efficiency of LLM agents.

Their findings show that ReasoningBank consistently outperforms classic memory mechanisms across web browsing and software engineering benchmarks, offering a practical path toward building more adaptive and reliable AI agents for enterprise applications.

The challenge of LLM agent memory

As LLM agents are deployed in applications that run for long periods, they encounter a continuous stream of tasks. One of the key limitations of current LLM agents is their failure to learn from this accumulated experience. By approaching each task in isolation, they inevitably repeat past mistakes, discard valuable insights from related problems, and fail to develop skills that would make them more capable over time.

The solution to this limitation is to give agents some kind of memory. Previous efforts to give agents memory have focused on storing past interactions for reuse by organizing information in various forms from plain text to structured graphs. However, these approaches often fall short. Many use raw interaction logs or only store successful task examples. This means they can't distill higher-level, transferable reasoning patterns and, crucially, they don’t extract and use the valuable information from the agent’s failures. As the researchers note in their paper, “existing memory designs often remain limited to passive record-keeping rather than providing actionable, generalizable guidance for future decisions.”

How ReasoningBank works

ReasoningBank is a memory framework designed to overcome these limitations. Its central idea is to distill useful strategies and reasoning hints from past experiences into structured memory items that can be stored and reused.

According to Jun Yan, a Research Scientist at Google and co-author of the paper, this marks a fundamental shift in how agents operate. "Traditional agents operate statically—each task is processed in isolation," Yan explained. "ReasoningBank changes this by turning every task experience (successful or failed) into structured, reusable reasoning memory. As a result, the agent doesn’t start from scratch with each customer; it recalls and adapts proven strategies from similar past cases."

The framework processes both successful and failed experiences and turns them into a collection of useful strategies and preventive lessons. The agent judges success and failure through LLM-as-a-judge schemes to obviate the need for human labeling.

Yan provides a practical example of this process in action. An agent tasked with finding Sony headphones might fail because its broad search query returns over 4,000 irrelevant products. "ReasoningBank will first try to figure out why this approach failed," Yan said. "It will then distill strategies such as ‘optimize search query’ and ‘confine products with category filtering.’ Those strategies will be extremely useful to get future similar tasks successfully done."

The process operates in a closed loop. When an agent faces a new task, it uses an embedding-based search to retrieve relevant memories from ReasoningBank to guide its actions. These memories are inserted into the agent’s system prompt, providing context for its decision-making. Once the task is completed, the framework creates new memory items to extract insights from successes and failures. This new knowledge is then analyzed, distilled, and merged into the ReasoningBank, allowing the agent to continuously evolve and improve its capabilities.

Supercharging memory with scaling

The researchers found a powerful synergy between memory and test-time scaling. Classic test-time scaling involves generating multiple independent answers to the same question, but the researchers argue that this “vanilla form is suboptimal because it does not leverage inherent contrastive signal that arises from redundant exploration on the same problem.”

To address this, they propose Memory-aware Test-Time Scaling (MaTTS), which integrates scaling with ReasoningBank. MaTTS comes in two forms. In “parallel scaling,” the system generates multiple trajectories for the same query, then compares and contrasts them to identify consistent reasoning patterns. In sequential scaling, the agent iteratively refines its reasoning within a single attempt, with the intermediate notes and corrections also serving as valuable memory signals.

This creates a virtuous cycle: the existing memory in ReasoningBank steers the agent toward more promising solutions, while the diverse experiences generated through scaling enable the agent to create higher-quality memories to store in ReasoningBank. 

“This positive feedback loop positions memory-driven experience scaling as a new scaling dimension for agents,” the researchers write.

ReasoningBank in action

The researchers tested their framework on WebArena (web browsing) and SWE-Bench-Verified (software engineering) benchmarks, using models like Google’s Gemini 2.5 Pro and Anthropic’s Claude 3.7 Sonnet. They compared ReasoningBank against baselines including memory-free agents and agents using trajectory-based or workflow-based memory frameworks.

The results show that ReasoningBank consistently outperforms these baselines across all datasets and LLM backbones. On WebArena, it improved the overall success rate by up to 8.3 percentage points compared to a memory-free agent. It also generalized better on more difficult, cross-domain tasks, while reducing the number of interaction steps needed to complete tasks. When combined with MaTTS, both parallel and sequential scaling further boosted performance, consistently outperforming standard test-time scaling.

This efficiency gain has a direct impact on operational costs. Yan points to a case where a memory-free agent took eight trial-and-error steps just to find the right product filter on a website. "Those trial and error costs could be avoided by leveraging relevant insights from ReasoningBank," he noted. "In this case, we save almost twice the operational costs," which also improves the user experience by resolving issues faster.

For enterprises, ReasoningBank can help develop cost-effective agents that can learn from experience and adapt over time in complex workflows and areas like software development, customer support, and data analysis. As the paper concludes, “Our findings suggest a practical pathway toward building adaptive and lifelong-learning agents.”

Yan confirmed that their findings point toward a future of truly compositional intelligence. For example, a coding agent could learn discrete skills like API integration and database management from separate tasks. "Over time, these modular skills... become building blocks the agent can flexibly recombine to solve more complex tasks," he said, suggesting a future where agents can autonomously assemble their knowledge to manage entire workflows with minimal human oversight.

Ria.city






Read also

How Spread Betting in Blackjack Works (Full 2025 Guide)

Palestinian national team on 'mission' for peace in Spain visit

Official: Calafiori drops out of Italy squad and returns to Arsenal

News, articles, comments, with a minute-by-minute update, now on Today24.pro

Today24.pro — latest news 24/7. You can add your news instantly now — here




Sports today


Новости тенниса


Спорт в России и мире


All sports news today





Sports in Russia today


Новости России


Russian.city



Губернаторы России









Путин в России и мире







Персональные новости
Russian.city





Friends of Today24

Музыкальные новости

Персональные новости