{ Add news
March 2010April 2010May 2010June 2010July 2010
August 2010
September 2010October 2010
November 2010
December 2010
January 2011
February 2011March 2011April 2011May 2011June 2011July 2011August 2011September 2011October 2011November 2011December 2011January 2012February 2012March 2012April 2012May 2012June 2012July 2012August 2012September 2012October 2012November 2012December 2012January 2013February 2013March 2013April 2013May 2013June 2013July 2013August 2013September 2013October 2013November 2013December 2013January 2014February 2014March 2014April 2014May 2014June 2014July 2014August 2014September 2014October 2014November 2014December 2014January 2015February 2015March 2015April 2015May 2015June 2015July 2015August 2015September 2015October 2015November 2015December 2015January 2016February 2016March 2016April 2016May 2016June 2016July 2016August 2016September 2016October 2016November 2016December 2016January 2017February 2017March 2017April 2017May 2017June 2017July 2017August 2017September 2017October 2017November 2017December 2017January 2018February 2018March 2018April 2018May 2018June 2018July 2018August 2018September 2018October 2018November 2018December 2018January 2019February 2019March 2019April 2019May 2019June 2019July 2019August 2019September 2019October 2019November 2019December 2019January 2020February 2020March 2020April 2020May 2020June 2020July 2020August 2020September 2020October 2020November 2020December 2020January 2021February 2021March 2021April 2021May 2021June 2021July 2021August 2021September 2021October 2021November 2021December 2021January 2022February 2022March 2022April 2022May 2022June 2022July 2022August 2022September 2022October 2022November 2022December 2022January 2023February 2023March 2023April 2023May 2023June 2023
News Every Day |

To understand AI’s problems look at the shortcuts taken to create it


A machine can only “do whatever we know how to order it to perform,” wrote the 19th-century computing pioneer Ada Lovelace. This reassuring statement was made in relation to Charles Babbage’s description of the first mechanical computer.

Lady Lovelace could not have known that in 2016, a program called AlphaGo, designed to play and improve at the board game “Go”, would not only be able to defeat all of its creators, but would do it in ways that they could not explain.

In 2023, the AI chatbot ChatGPT is taking this to another level, holding conversations in multiple languages, solving riddles and even passing legal and medical exams. Our machines are now able to do things that we, their makers, do not know “how to order them to do”.

This has provoked both excitement and concern about the potential of this technology. Our anxiety comes from not knowing what to expect from these new machines, both in terms of their immediate behaviour and of their future evolution.

We can make some sense of them, and the risks, if we consider that all their successes, and most of their problems, come directly from the particular recipe we are following to create them.

The reason why machines are now able to do things that we, their makers, do not fully understand is because they have become capable of learning from experience. AlphaGo became so good by playing more games of Go than a human could fit into a lifetime. Likewise, no human could read as many books as ChatGPT has absorbed.

Reducing anxiety

It’s important to understand that machines have become intelligent without thinking in a human way. This realisation alone can greatly reduce confusion, and therefore anxiety.

Intelligence is not exclusively a human ability, as any biologist will tell you, and our specific brand of it is neither its pinnacle nor its destination. It may be difficult to accept for some, but intelligence has more to do with chickens crossing the road safely than with writing poetry.

In other words, we should not necessarily expect machine intelligence to evolve towards some form of consciousness. Intelligence is the ability to do the right thing in unfamiliar situations, and this can be found in machines, for example those that recommend a new book to a user.

If we want to understand how to handle AI, we can return to a crisis that hit the industry from the late 1980s, when many researchers were still trying to mimic what we thought humans do. For example, they were trying to understand the rules of language or human reasoning, to program them into machines.

That didn’t work, so they ended up taking some shortcuts. This move might well turn out to be one of the most consequential decisions in our history.

Fork in the road

The first shortcut was to rely on making decisions based on statistical patterns found in data. This removed the need to actually understand the complex phenomena that we wanted the machines to emulate, such as language. The auto-complete feature in your messaging app can guess the next word without understanding your goals.

While others had similar ideas before, the first to make this method really work, and stick, was probably Fredrick Jelinek at IBM, who invented “statistical language models”, the ancestors of all GPTs, while working on machine translation.

In the early 1990s, he summed up that first shortcut by quipping: “Whenever I fire a linguist, our systems performance goes up. Though the comment may have been said jokingly, it reflected a real-world shift in the focus of AI away from attempts to emulate the rules of language.

This approach rapidly spread to other domains, introducing a new problem: sourcing the data necessary to train statistical algorithms.

Creating the data specifically for training tasks would have been expensive. A second shortcut became necessary: data could be harvested from the web instead.

As for knowing the intent of users, such as in content recommendation systems, a third shortcut was found: to constantly observe users’ behaviour and infer from it what they might click on.

By the end of this process, AI was transformed and a new recipe was born. Today, this method is found in all online translation, recommendations and question-answering tools.

Fuel to operate

For all its success, this recipe also creates problems. How can we be sure that important decisions are made fairly, when we cannot inspect the machine’s inner workings?

How can we stop machines from amassing our personal data, when this is the very fuel that makes them operate? How can a machine be expected to stop harmful content from reaching users, when it is designed to learn what makes people click?

It doesn’t help that we have deployed all this in a very influential position at the very centre of our digital infrastructure, and have delegated many important decisions to AI.

For instance, algorithms, rather than human decision makers, dictate what we’re shown on social media in real time. In 2022, the coroner who ruled on the tragic death of 14-year-old Molly Russell partly blamed an algorithm for showing harmful material to the child without being asked to.

As these concerns derive from the same shortcuts that made the technology possible, it will be challenging to find good solutions. This is also why the initial decisions of the Italian privacy authority to block ChatGPT created alarm.

Initially, the authority raised the issues of personal data being gathered from the web without a legal basis, and of the information provided by the chatbot containing errors. This could have represented a serious challenge to the entire approach, and the fact that it was solved by adding legal disclaimers, or changing the terms and conditions, might be a preview of future regulatory struggles.

We need good laws, not doomsaying. The paradigm of AI shifted long ago, but it was not followed by a corresponding shift in our legislation and culture. That time has now come.

An important conversation has started about what we should want from AI, and this will require the involvement of different types of scholars. Hopefully, it will be based on the technical reality of what we have built, and why, rather than on sci-fi fantasies or doomsday scenarios.

The Conversation

Author of "The Shortcut: Why Intelligent Machines Do Not Think Like Us", published by CRC Press, 2023


Бизнес-центры теснят жилье // Застройщики меняют профиль

Animated Disney Movie Moments That Have Aged Terribly

NVIDIA is Obsessed with Apple

This SSD Is Cooled With Solid-State Cooling

The Future Of Mini PCs Thanks To AirJet: Zotac Zbox PI430AJ


Read also

'#CancelNetflix': Twitter users boast about ditching Netflix subscriptions amid password-sharing backlash

India’s coal production grows 7.10 per cent to 76.26 MT in May 

Chief Justice of England & Wales set for public lecture at University of Malawi

News, articles, comments, with a minute-by-minute update, now on Today24.pro

News Every Day

Actors That Released Their Career Best And Worst Movie In The Same Year

Today24.pro — latest news 24/7. You can add your news instantly now — here

News Every Day

Actors That Released Their Career Best And Worst Movie In The Same Year

Sports today

Новости тенниса
Андрей Рублёв

Российский теннисист Рублев обыграл француза Муте и вышел в третий круг «Ролан Гаррос»

Спорт в России и мире

ЦСКА заинтересован в форварде "Пани НН" Сулейманове

All sports news today

Sports in Russia today


РФС: самым убыточным клубом в РПЛ в 2022 году стал московский «Спартак»

Новости России

Game News

AI industry begs someone to please stop the AI industry before all human life is extinguished by the AI industry


Game News

Oh heck yeah, these gaudy origami PC cases now come with water cooling support

Губернаторы России

Певица Бьянка послала всех, кто критикует ее за лишний вес

Патриарх Кирилл назначил иерея Мишина на пост главы совета по церковному искусству

Чемпиона мира по рукопашному бою Баймасханова задержали со свертком наркотиков в Москве

Москвичам рассказали об особенностях реконструкции ТПУ «Площадь трех вокзалов»

В районах Перово и Соколиная гора модернизируют трамвайные пути

Пашу о Тимати: «Когда расходились, такой тупняк был. Он вещи написал, которые меня лично обидели»

"Синий троллейбус Булата Окуджавы" будет курсировать по Иркутску в День города

Юлия Савичева рассказала о трудном детстве и первой зарплате, которую получила в 7 лет

В Сети обсуждают работу бывшей возлюбленной Тимати Алены Шишковой

Денис Евсеев проиграл в первом круге турнира в США

Одноклубник Александра Зинченко может перейти в ПСЖ

«Медведев совершил невероятное на «Мастерсе» в Риме» — Морозова

Хачанов вышел в третий круг «Ролан Гаррос» — 2023

Выставка о героях труда открылась в Музее Победы

Российские металлурги интегрировали усилия в сфере цифровизации производства

На чужой GitHub рта не разевай // Татьяна Исакова о разных подходах реализации IT-проектов в госсекторе

5 историй из детства звезд российского шоу-бизнеса

В аэропорте Васьково отчитались об итогах работы за минувший месяц

На нет и данных нет // США объявили о новых контрмерах в рамках Договора о стратегических наступательных вооружениях с Россией

Си Цзиньпин призвал руководителей нацбезопасности КНР быть готовыми к «наихудшему сценарию»

Бизнес-центры теснят жилье // Застройщики меняют профиль

В Москве объявили экстренное предупреждение из-за грозы, града и шквалистого ветра

В Подмосковье вновь пройдёт акция «Проверь здоровье в парке»

ЛУКОЙЛ увеличил добычу нефти на Западной Курне-2

Трамваи встали на Лиговском из-за столкновения с автобусом утром 2 июня

Путин в России и мире

Персональные новости Russian.city

Певица Olga Frolova выпустила новый трек «Гордость»

News Every Day

NVIDIA is Obsessed with Apple

Friends of Today24

Музыкальные новости

Персональные новости