Add news
March 2010April 2010May 2010June 2010July 2010
August 2010
September 2010October 2010
November 2010
December 2010
January 2011
February 2011March 2011April 2011May 2011June 2011July 2011August 2011September 2011October 2011November 2011December 2011January 2012February 2012March 2012April 2012May 2012June 2012July 2012August 2012September 2012October 2012November 2012December 2012January 2013February 2013March 2013April 2013May 2013June 2013July 2013August 2013September 2013October 2013November 2013December 2013January 2014February 2014March 2014April 2014May 2014June 2014July 2014August 2014September 2014October 2014November 2014December 2014January 2015February 2015March 2015April 2015May 2015June 2015July 2015August 2015September 2015October 2015November 2015December 2015January 2016February 2016March 2016April 2016May 2016June 2016July 2016August 2016September 2016October 2016November 2016December 2016January 2017February 2017March 2017April 2017May 2017June 2017July 2017August 2017September 2017October 2017November 2017December 2017January 2018February 2018March 2018April 2018May 2018June 2018July 2018August 2018September 2018October 2018November 2018December 2018January 2019February 2019March 2019April 2019May 2019June 2019July 2019August 2019September 2019October 2019November 2019December 2019January 2020February 2020March 2020April 2020May 2020June 2020July 2020August 2020September 2020October 2020November 2020December 2020January 2021February 2021March 2021April 2021May 2021June 2021July 2021August 2021September 2021October 2021November 2021December 2021January 2022February 2022March 2022April 2022May 2022June 2022July 2022August 2022September 2022October 2022November 2022December 2022
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
News Every Day |

Powerful linear accelerator begins smashing atoms – 2 scientists on the team explain how it could reveal rare forms of matter



Just a few hundred feet from where we are sitting is a large metal chamber devoid of air and draped with the wires needed to control the instruments inside. A beam of particles passes through the interior of the chamber silently at around half the speed of light until it smashes into a solid piece of material, resulting in a burst of rare isotopes.

This is all taking place in the Facility for Rare Isotope Beams, or FRIB, which is operated by Michigan State University for the U.S. Department of Energy Office of Science. Starting in May 2022, national and international teams of scientists converged at Michigan State University and began running scientific experiments at FRIB with the goal of creating, isolating and studying new isotopes. The experiments promised to provide new insights into the fundamental nature of the universe.

We are two professors in nuclear chemistry and nuclear physics who study rare isotopes. Isotopes are, in a sense, different flavors of an element with the same number of protons in their nucleus but different numbers of neutrons.

The accelerator at FRIB started working at low power, but when it finishes ramping up to full strength, it will be the most powerful heavy-ion accelerator on Earth. By accelerating heavy ions – electrically charged atoms of elements – FRIB will allow scientists like us to create and study thousands of never-before-seen isotopes. A community of roughly 1,600 nuclear scientists from all over the world has been waiting for a decade to begin doing science enabled by the new particle accelerator.

The first experiments at FRIB were completed over the summer of 2022. Even though the facility is currently running at only a fraction of its full power, multiple scientific collaborations working at FRIB have already produced and detected about 100 rare isotopes. These early results are helping researchers learn about some of the rarest physics in the universe.

Rare isotopes are radioactive and decay over time as they emit radiation – visible here as the streaks coming from the small piece of uranium in the center.

What is a rare isotope?

It takes incredibly high amounts of energy to produce most isotopes. In nature, heavy rare isotopes are produced during the cataclysmic deaths of massive stars called supernovas or during the merging of two neutron stars.

To the naked eye, two isotopes of any element look and behave the same way – all isotopes of the element mercury would look just like the liquid metal used in old thermometers. However, because the nuclei of isotopes of the same element have different numbers of neutrons, they differ in how long they live, what type of radioactivity they emit and in many other ways.

For example, some isotopes are stable and do not decay or emit radiation, so they are common in the universe. Other isotopes of the very same element can be radioactive so they inevitably decay away as they turn into other elements. Since radioactive isotopes disappear over time, they are relatively rarer.

Not all decay happens at the same rate though. Some radioactive elements – like potassium-40 – emit particles through decay at such a low rate that a small amount of the isotope can last for billions of years. Other, more highly radioactive isotopes like magnesium-38 exist for only a fraction of a second before decaying away into other elements. Short-lived isotopes, by definition, do not survive long and are rare in the universe. So if you want to study them, you have to make them yourself.

A diagram of a large facility.

The Facility for Rare Isotope Beams was designed to allow researchers to create rare isotopes and measure them before they decay.

Facility for Rare Isotope Beams, CC BY-ND

Creating isotopes in a lab

While only about 250 isotopes naturally occur on Earth, theoretical models predict that about 7,000 isotopes should exist in nature. Scientists have used particle accelerators to produce around 3,000 of these rare isotopes.

A hallway with dozens of large chambers on either side extending into the distance.

The green-colored chambers use electromagnetic waves to accelerate charged ions to nearly half the speed of light.

Facility for Rare Isotope Beams, CC BY-ND

The FRIB accelerator is 1,600 feet long and made of three segments folded in roughly the shape of a paperclip. Within these segments are numerous, extremely cold vacuum chambers that alternatively pull and push the ions using powerful electromagnetic pulses. FRIB can accelerate any naturally occurring isotope – whether it is as light as oxygen or as heavy as uranium – to approximately half the speed of light.

To create radioactive isotopes, you only need to smash this beam of ions into a solid target like a piece of beryllium metal or a rotating disk of carbon.

A complicated machine in a large tube.

There are many different instruments designed to measure specific attributes of the particles created during experiments at FRIB – like this instrument called FDSi, which is built to measure charged particles, neutrons and photons.

Facility for Rare Isotope Beams, CC BY-ND

The impact of the ion beam on the fragmentation target breaks the nucleus of the stable isotope apart and produces many hundreds of rare isotopes simultaneously. To isolate the interesting or new isotopes from the rest, a separator sits between the target and the sensors. Particles with the right momentum and electrical charge will be passed through the separator while the rest are absorbed. Only a subset of the desired isotopes will reach the many instruments built to observe the nature of the particles.

The probability of creating any specific isotope during a single collision can be very small. The odds of creating some of the rarer exotic isotopes can be on the order of 1 in a quadrillion – roughly the same odds as winning back-to-back Mega Millions jackpots. But the powerful beams of ions used by FRIB contain so many ions and produce so many collisions in a single experiment that the team can reasonably expect to find even the rarest of isotopes. According to calculations, FRIB’s accelerator should be able to produce approximately 80% of all theorized isotopes.

The first two FRIB scientific experiments

A multi-institution team led by researchers at Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), University of Tennessee, Knoxville (UTK), Mississippi State University and Florida State University, together with researchers at MSU, began running the first experiment at FRIB on May 9, 2022. The group directed a beam of calcium-48 – a calcium nucleus with 48 neutrons instead of the usual 20 – into a beryllium target at 1 kW of power. Even at one quarter of a percent of the facility’s 400-kW maximum power, approximately 40 different isotopes passed through the separator to the instruments.

The FDSi device recorded the time each ion arrived, what isotope it was and when it decayed away. Using this information, the collaboration deduced the half-lives of the isotopes; the team has already reported on five previously unknown half-lives.

The second FRIB experiment began on June 15, 2022, led by a collaboration of researchers from Lawrence Livermore National Laboratory, ORNL, UTK and MSU. The facility accelerated a beam of selenium-82 and used it to produce rare isotopes of the elements scandium, calcium and potassium. These isotopes are commonly found in neutron stars, and the goal of the experiment was to better understand what type of radioactivity these isotopes emit as they decay. Understanding this process could shed light on how neutron stars lose energy.

The first two FRIB experiments were just the tip of the iceberg of this new facility’s capabilities. Over the coming years, FRIB is set to explore four big questions in nuclear physics: First, what are the properties of atomic nuclei with a large difference between the numbers of protons and neutrons? Second, how are elements formed in the cosmos? Third, do physicists understand the fundamental symmetries of the universe, like why there is more matter than antimatter in the universe? Finally, how can the information from rare isotopes be applied in medicine, industry and national security?The Conversation

Sean Liddick, Associate Professor of Chemistry, Michigan State University and Artemis Spyrou, Professor of Nuclear Physics, Michigan State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.









Read also

Policy Options Abundant to Improve Housing Affordability for Families

The 5 best snow shovels for winter 2022, from power to pusher models

Ben Simmons out at least 3 games with left calf strain


News, articles, comments, with a minute-by-minute update, now on Today24.pro

News Every Day

I make $1,000 a month by promoting Amazon products on social media. It only takes 5 hours per week — here's how I set up my side hustle.

Today24.pro — latest news 24/7. You can add your news instantly now — here


News Every Day

Billionaire investor Howard Marks touts a bargain boom as interest-rate fears grip markets - and predicts a surge in companies going bankrupt



Sports today


Новости тенниса
WTA

Путинцева подобралась к топ-50 рейтинга WTA



Спорт в России и мире
Москва

Кубок Москвы по джампингу прошёл в ТРЦ «Нора»


Загрузка...

All sports news today




Загрузка...

Sports in Russia today

Москва

Первая релокация Дядюры. Любовь к футболу привела в Ульяновск московского дирижера


Новости России

Game News

Competitive Farming Simulator is like an agriculture Grand Prix


Russian.city


Архангельск

Правительство направляет средства на транспортную инфраструктуру в регионах Арктической зоны


Губернаторы России
2022

Титул «Мисс Офис – 2022» и 3 000 000 рублей уехали в Петропавловск-Камчатский


«Какое-то бедствие»: жители Кемерова обеспокоены очередной опиловкой деревьев

Интервью с военным журналистом Артуром Геворкяном: история и аналитика

Аэропорты Краснодара, Анапы и Геленджика остаются закрытыми до 9 декабря

Россия не планировала участвовать в Мюнхенской конференции — РИА Новости


В Казани объявили победителей регионального отборочного тура Всероссийского культурно-благотворительного фестиваля «Добрая волна»

Пугачева ликвидирует свою последнюю фирму в России

Татьяна Навка, Филипп Киркоров, Камила Валиева, Юлия Пересильд и другие гости открытия ГУМ-Катка на Красной площади

«Потолок как в Эрмитаже»: Волочкова судится за затопленную квартиру в Петербурге


Тренер Свёнтек: Ига могла выиграть матчи с Соболенко на Итоговом и с Корне на Уимблдоне, но провела их "безответственно"

Режиссёр Алексей Смирнов: Приезд в Астрахань стал для меня счастливым случаем

Путинцева сыграет на выставочном командном турнире в Санкт-Петербурге

Путинцева подобралась к топ-50 рейтинга WTA



Новые провокации Азербайджана. «Южный Азербайджан» крепчает: Баку втягивается в антииранскую истерию

СРОЧНО! Парламент Франции единогласно принял резолюцию в поддержку Армении и за введение санкций против Азербайджана

Шифр расшифрован! Механизм и спасение от эпидемии коронавирусов

Интервью с военным журналистом Артуром Геворкяном: история и аналитика


ТЕНЬ И ПЛЕТЕНЬ В ПРОБЛЕМАХ ОДКБ. АНАЛИТИКА И ФАКТЫ

«Кубок ТРИКОЛОР» соберет звезд мирового танцевального спорта

Закрытие Азербайджаном Лачинского коридора станет нападением на российских миротворцев - Глава МИД Нагорного Карабаха (Арцаха)

РБК: денежный рынок на Мосбирже остался почти без долларов и евро


Тайны восточного базара по-челнински

Музей Победы предложил уникальную акцию для держателей «Пушкинской карты»

«Дочь ползает по комнатам, ищет маму, братика»: муж погибшей в ДТП ждет наказания автоледи

Ефимов: Открылась регистрация на обучающий курс для столичных инженеров



Путин в России и мире







Персональные новости
Russian.city

Виктор Цой

Актриса Марьяна Спивак сыграла роль супруги Виктора Цоя из-за любви к певцу



News Every Day

LAMB BUTTER Will Melt in Your Mouth! Ancient Food on the Silk Road!




Friends of Today24


Загрузка...
Музыкальные новости

Персональные новости
Moscow.media