Add news
March 2010
April 2010
May 2010June 2010July 2010
August 2010
September 2010October 2010
November 2010
December 2010
January 2011
February 2011March 2011April 2011May 2011June 2011July 2011August 2011September 2011October 2011November 2011December 2011January 2012February 2012March 2012April 2012May 2012June 2012July 2012August 2012September 2012October 2012November 2012December 2012January 2013February 2013March 2013April 2013May 2013June 2013July 2013August 2013September 2013October 2013November 2013December 2013January 2014February 2014March 2014April 2014May 2014June 2014July 2014August 2014September 2014October 2014November 2014December 2014January 2015February 2015March 2015April 2015May 2015June 2015July 2015August 2015September 2015October 2015November 2015December 2015January 2016February 2016March 2016April 2016May 2016June 2016July 2016August 2016September 2016October 2016November 2016December 2016January 2017February 2017March 2017April 2017May 2017June 2017July 2017August 2017September 2017October 2017November 2017December 2017January 2018February 2018March 2018April 2018May 2018June 2018July 2018August 2018September 2018October 2018November 2018December 2018January 2019February 2019March 2019April 2019May 2019June 2019July 2019August 2019September 2019October 2019November 2019December 2019January 2020February 2020March 2020April 2020May 2020June 2020July 2020August 2020September 2020October 2020November 2020December 2020January 2021February 2021
News Every Day |

Mystery of how human immune cells develop lifelong immunity uncovered – new research

Our research could be important for developing more effective vaccines in the future. Arturs Budkevics/ Shutterstock

We understand much of how the immune system works but, as recent efforts to combat COVID-19 have shown, its sheer complexity means many mysteries still remain. For example, how our immune system learns to remember past infections has proved very difficult to study in humans. But our new study has brought us one step closer to understanding how our body remembers past infections so we can fight them in the future. We uncovered the important role antibodies play in creating long-lived immunity – and that different types of immune cells, called B cells, can influence the type of immune memory generated.

Our research focused on so-called germinal centres which form during infections in our lymph nodes, spleen, and tonsils. These play an important role in our immune system, as they’re where immune cells assemble and interact during immune responses. They’re also where our “immune memory” is created, so the immune system can “remember” how to defend against certain pathogens in the future.

Germinal centres are made up of different immune cells, and one type, called B cells, are particularly important for generating immune memory. These B cells make antibodies (a protein) in response to infections or vaccinations, which bind to pathogens (like bacteria and viruses) and either destroy them or trigger other immune cells into action.

Early on in an infection, some of our body’s B cells respond by releasing a burst of antibodies that provide an early line of defence against the pathogen. But most of these B cells released in this initial first wave are short-lived and die once the infection is over, resulting in the loss of their antibodies. However, some B cells enter germinal centres where they can evolve stronger antibodies and become long-lived cells that protect us from future infection.

Germinal centres

Although the germinal centre is incredibly important to immune memory, its complexity has made it very difficult for scientists to completely understand how B cells behave while inside them. So we set out to create a “roadmap” of the germinal centre response using human tonsils to understand which types of B cells are present, and how their behaviour contributes to creating long-lived immunity. Knowing these factors could be important for developing effective vaccines.

We used a cutting-edge technology called single cell genomics, which measures the genes expressed by tens of thousands of individual cells and the genetic sequence that produces their antibody. The genes expressed by each individual B cell tells us about the cell’s behaviour and function, while the antibody gene sequence reveals how the antibodies change in the germinal centre. This approach allowed us to identify very rare types of B cells that would be missed with other technologies.

We then used this information to reconstruct the entire germinal centre response, which showed us exactly how different B cells evolve from the moment they detect a pathogen through to immune memory formation.

Antibody class

One of our key discoveries was that the type of antibody a B cell makes affects how it behaves and how likely it is to create long-lived immunity. B cells can express one of five antibody classes, and each class triggers different immune responses. For example, the antibody class IgG triggers strong antiviral immune responses, while the IgA class protects our gut and airway.

Computer generated image of Y-shaped antibodies surrounding a large sphere-shaped pathogen.
Different types of antibodies target certain pathogens. ustas7777777/ Shutterstock

All B cells start off making the antibody class IgM, which offers broad immune protection, but is less effective compared to other classes. But B cells can switch to another class when they are activated during an immune response. It was previously thought that this process of class switching occurs in the germinal centre. But recent studies in mice have found B cells switch their antibody class before the germinal centre response. We were able to confirm this happens in humans as well. We also identified which genes are expressed by B cells at this important stage.

We also found that B cells that had switched from making IgM to IgA or IgG antibodies express different levels of certain genes, including genes that control whether a B cell becomes long-lived. So, whether a B cell switches its antibody class before entering a germinal centre influences whether it develops long-lived immunity to that particular pathogen. However, we still don’t completely understand why a B cell switches or not.

Whether a B cell is part of the short-lived first wave or helps form the germinal centre also depends on many factors, including how quickly a pathogen is cleared, a person’s age, and the type of infection. Because B cells need germinal centres to develop immune memory, the more we can discover about these different factors, the better our understanding of our susceptibility to different diseases.

Understanding precisely how germinal centres work is key to designing effective vaccines that generate lifelong immunity. In the future, combining different technologies such as those we used in our study with other methods would allow us to directly compare immune responses to vaccines against many infectious agents, like the coronavirus SARS-CoV-2, and understand immune memory, more generally.

The Conversation

Dr Louisa James receives funding from the Wellcome Trust and Bart's Charity. She is affiliated with the British Society for Immunology.

Hamish King is a recipient of the Sir Henry Wellcome Post Doctoral Fellowship from the Wellcome Trust.

Read also

Ancelotti outlines how Liverpool bruising has helped transform Everton star

Covid-19 has boosted the campaign against exams in American schools

Pubs WILL be able to serve takeaway pints on April 12 when beer gardens open

News, articles, comments, with a minute-by-minute update, now on — latest news 24/7. You can add your news instantly now — here
News Every Day

Using a KITE to Catch the FASTEST FISH IN THE SEA, 3 at a time!