Add news
March 2010 April 2010 May 2010 June 2010 July 2010
August 2010
September 2010 October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 July 2011 August 2011 September 2011 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 October 2014 November 2014 December 2014 January 2015 February 2015 March 2015 April 2015 May 2015 June 2015 July 2015 August 2015 September 2015 October 2015 November 2015 December 2015 January 2016 February 2016 March 2016 April 2016 May 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017 March 2017 April 2017 May 2017 June 2017 July 2017 August 2017 September 2017 October 2017 November 2017 December 2017 January 2018 February 2018 March 2018 April 2018 May 2018 June 2018 July 2018 August 2018 September 2018 October 2018 November 2018 December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019 July 2019 August 2019 September 2019 October 2019 November 2019 December 2019 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021 March 2021 April 2021 May 2021 June 2021 July 2021 August 2021 September 2021 October 2021 November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022 December 2022 January 2023 February 2023 March 2023 April 2023 May 2023 June 2023 July 2023 August 2023 September 2023 October 2023 November 2023 December 2023 January 2024 February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2024 December 2024 January 2025 February 2025 March 2025 April 2025 May 2025 June 2025 July 2025 August 2025 September 2025 October 2025 November 2025 December 2025
1 2 3 4 5 6 7 8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
News Every Day |

Robot Employment Survival 101

Fear not the rise of the machines? That appears to be the advice given by MIT economist David H. Autor in a paper he recently presented at the Kansas City Fed’s symposium in Jackson Hole, Wyoming. Responding to a significant uptick in economists’ concern over the effects of automation on employment, including the “stunning” results of a poll suggesting “that a plurality of mainstream economists has accepted—at least tentatively—the proposition that a decade of technological advancement has made the median worker no better off, and possibly worse off,” Autor suggests that it will be a lot harder to automate us all away than many journalists and expert commentators have indicated.

Autor argues that “Polanyi’s paradox,” whereby “We can know more than we can tell…” saves us from the threat of total automation dislocation, because there will always be jobs that rely on a variety of particularly human skills and tasks, skills and tasks that we can’t entirely explain to ourselves, much less to a computer. As the philosopher Michael Polanyi himself put it, “The skill of a driver cannot be replaced by a thorough schooling in the theory of the motorcar; the knowledge I have of my own body differs altogether from the knowledge of its physiology.”

While jobs consisting almost entirely of routine tasks, i.e. those easily codified into rules that can then be automated, have been and will continue to be replaced by machine labor, then, there is according to Autor a natural buffer to keep many people employed (if not necessarily well paid). In fact, Autor sees a significant opportunity for computer-enhanced human labor, for “tasks that cannot be substituted by computerization are generally complemented by it.” The construction worker, in his example, has to manage too many variables in a fluid environment to be automated away. However, he can be given a backhoe to replace his shovel, enhancing the productivity of his labor while making backhoe-trained workers more valuable than the merely shovel-ready.

This is a blue-collar example of “skill-biased technical change,” more traditionally described by Autor’s fellow MIT professors (and techno-employment pessimists) Erik Brynjolfsson and Andrew McAfee:

Technologies like robotics, numerically controlled machines, computerized inventory control, and automatic transcription have been substituting for routine tasks, displacing those workers. Meanwhile other technologies like data visualization, analytics, high-speed communications, and rapid prototyping have augmented the contributions of more abstract and data-driven reasoning, increasing the value of those jobs.

Brynjolfsson and McAfee discuss in their book a polarization of the employment market, where high-skill abstract-task intensive jobs are increasingly well compensated, and well complemented by machine labor. Low-skill Polanyi paradox jobs, like janitorial work and home health care, are also insulated from being automated away, but as Autor describes it, they are too well-insulated to even benefit from automation complementing their labor. Because their jobs require only the minimal amount of human reasoning that any competent adult can provide, their wages are depressed by the large supply of interchangeable labor. Middle-skill jobs, however, are nearly wiped out in Brynjolfsson and McAfee’s analysis.

Here, too, Autor finds some reason for more optimism. He concludes that “employment polarization will not continue indefinitely,” for “While many middle-skill tasks are susceptible to automation, many middle-skill jobs demand a mixture of tasks from across the skill spectrum.” Moreover, “many of the tasks currently bundled into these jobs cannot readily be unbundled—with machines performing the middle-skill tasks and workers performing the residual—without a significant drop in quality.” Autor’s example here is the technical support call center where a human is retained as a social conveyance device for the troubleshooting heuristics of the computer system sitting in front of him. That may seem like efficient low-skill complementarity, but it in fact turns out to be very frustrating to discover that the technical support person has no knowledge, creativity, or initiative beyond what the computer tells them to read. Autor says “this is generally not a productive form of work organization because it fails to harness the complementaries between technical and interpersonal skills.”

Both Autor and Brynjolfsson and McAfee describe how systems are redesigned in order to take advantage of automation, however. Brynjolfsson and McAfee wrote that “a key aspect of SBTC was not just the skills of those working with computers, but more importantly the broader changes in work organization that were made possible by information technology.” They continued, “It was not so much that those directly working with computers had to be more skilled, but rather that whole production processes, and even industries, were reengineered to exploit powerful new information technologies.” Autor gives the example of Amazon, formerly reliant on low-skill runners to pick their products for shipping, dashing around the warehouse, bringing in Kiva Systems to design a more robot-friendly system where the shelves were programmed to come to the pickers, reducing the human job to only that task that could not be exported.

As the automated economy progresses, we would do well to remember that, while there is certainly a baked-in pattern and logic to computerized work, the programming away of jobs is performed by people. Programmers and management consultants decide how best to “reengineer” “whole production processes, and even industries” to take advantage of the capabilities of computers. That it so happens that jobs resembling those of the programmers and consultants, jobs high in abstraction, turn out to also be those best complemented, rather than replaced, by automation may be more than convenient.

The seemingly mundane routinized tasks of the Amazon picker, or the retail worker, or the technical support specialist may seem to be little more than drudgery and tasks to be automated. But, as Autor describes in several contexts, there are many ways in which those routine tasks can be embedded in more comprehensive work environments, and computerization can add value to the job as it stands. The trick is, the programmer and the consultant have to see the job in all its particularity before they could know how to complement it. They rarely do, and so those jobs are rarely complemented. They have to see how the support specialist uses his whole repertoire of human advantages before they replace him with a screen reader.


The post Robot Employment Survival 101 appeared first on The American Conservative.

Ria.city






Read also

bet365 bonus code NYPBET: Bet $5, get $150 in bonus bets for Jets vs. Dolphins

Alaska school district erases Veterans Day from official calendar: ‘Absolutely unacceptable’

4 Signs You’re Heading Towards An Overflow Of Cash (According To Tarot)

News, articles, comments, with a minute-by-minute update, now on Today24.pro

Today24.pro — latest news 24/7. You can add your news instantly now — here




Sports today


Новости тенниса


Спорт в России и мире


All sports news today





Sports in Russia today


Новости России


Russian.city



Губернаторы России









Путин в России и мире







Персональные новости
Russian.city





Friends of Today24

Музыкальные новости

Персональные новости